Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37239038

ABSTRACT

Cocaine administration alters the microRNA (miRNA) landscape in the cortico-accumbal pathway. These changes in miRNA can play a major role in the posttranscriptional regulation of gene expression during withdrawal. This study aimed to investigate the changes in microRNA expression in the cortico-accumbal pathway during acute withdrawal and protracted abstinence following escalated cocaine intake. Small RNA sequencing (sRNA-seq) was used to profile miRNA transcriptomic changes in the cortico-accumbal pathway [infralimbic- and prelimbic-prefrontal cortex (IL and PL) and nucleus accumbens (NAc)] of rats with extended access to cocaine self-administration followed by an 18-h withdrawal or a 4-week abstinence. An 18-h withdrawal led to differential expression (fold-change > 1.5 and p < 0.05) of 21 miRNAs in the IL, 18 miRNAs in the PL, and two miRNAs in the NAc. The mRNAs potentially targeted by these miRNAs were enriched in the following pathways: gap junctions, neurotrophin signaling, MAPK signaling, and cocaine addiction. Moreover, a 4-week abstinence led to differential expression (fold-change > 1.5 and p < 0.05) of 23 miRNAs in the IL, seven in the PL, and five miRNAs in the NAc. The mRNAs potentially targeted by these miRNAs were enriched in pathways including gap junctions, cocaine addiction, MAPK signaling, glutamatergic synapse, morphine addiction, and amphetamine addiction. Additionally, the expression levels of several miRNAs differentially expressed in either the IL or the NAc were significantly correlated with addiction behaviors. Our findings highlight the impact of acute and protracted abstinence from escalated cocaine intake on miRNA expression in the cortico-accumbal pathway, a key circuit in addiction, and suggest developing novel biomarkers and therapeutic approaches to prevent relapse by targeting abstinence-associated miRNAs and their regulated mRNAs.

2.
Front Behav Neurosci ; 16: 832899, 2022.
Article in English | MEDLINE | ID: mdl-35316955

ABSTRACT

Cocaine affects food intake, metabolism and bodyweight. It has been hypothesized that feeding hormones like leptin play a role in this process. Preclinical studies have shown a mutually inhibitory relationship between leptin and cocaine, with leptin also decreasing the rewarding effects of cocaine intake. But prior studies have used relatively small sample sizes and did not investigate individual differences in genetically heterogeneous populations. Here, we examined whether the role of individual differences in bodyweight and blood leptin level are associated with high or low vulnerability to addiction-like behaviors using data from 306 heterogeneous stock rats given extended access to intravenous self-administration of cocaine and 120 blood samples from 60 of these animals, that were stored in the Cocaine Biobank. Finally, we tested a separate cohort to evaluate the causal effect of exogenous leptin administration on cocaine seeking. Bodyweight was reduced due to cocaine self-administration in males during withdrawal and abstinence, but was increased in females during abstinence. However, bodyweight was not correlated with addiction-like behavior vulnerability. Blood leptin levels after ∼6 weeks of cocaine self-administration did not correlate with addiction-like behaviors, however, baseline blood leptin levels before any access to cocaine negatively predicted addiction-like behaviors 6 weeks later. Finally, leptin administration in a separate cohort of 59 animals reduced cocaine seeking in acute withdrawal and after 7 weeks of protracted abstinence. These results demonstrate that high blood leptin level before access to cocaine may be a protective factor against the development of cocaine addiction-like behavior and that exogenous leptin reduces the motivation to take and seek cocaine. On the other hand, these results also show that blood leptin level and bodyweight changes in current users are not relevant biomarkers for addiction-like behaviors.

3.
eNeuro ; 8(3)2021.
Article in English | MEDLINE | ID: mdl-33875455

ABSTRACT

The rat oxycodone and cocaine biobanks contain samples that vary by genotypes (by using genetically diverse genotyped HS rats), phenotypes (by measuring addiction-like behaviors in an advanced SA model), timepoints (samples are collected longitudinally before, during, and after SA, and terminally at three different timepoints in the addiction cycle: intoxication, withdrawal, and abstinence or without exposure to drugs through age-matched naive rats), samples collected (organs, cells, biofluids, feces), preservation (paraformaldehyde-fixed, snap-frozen, or cryopreserved) and application (proteomics, transcriptomics, microbiomics, metabolomics, epigenetics, anatomy, circuitry analysis, biomarker discovery, etc.Substance use disorders (SUDs) are pervasive in our society and have substantial personal and socioeconomical costs. A critical hurdle in identifying biomarkers and novel targets for medication development is the lack of resources for obtaining biological samples with a detailed behavioral characterization of SUD. Moreover, it is nearly impossible to find longitudinal samples. As part of two ongoing large-scale behavioral genetic studies in heterogeneous stock (HS) rats, we have created two preclinical biobanks using well-validated long access (LgA) models of intravenous cocaine and oxycodone self-administration (SA) and comprehensive characterization of addiction-related behaviors. The genetic diversity in HS rats mimics diversity in the human population and includes individuals that are vulnerable or resilient to compulsive-like responding for cocaine or oxycodone. Longitudinal samples are collected throughout the experiment, before exposure to the drug, during intoxication, acute withdrawal, and protracted abstinence, and include naive, age-matched controls. Samples include, but are not limited to, blood plasma, feces and urine, whole brains, brain slices and punches, kidney, liver, spleen, ovary, testis, and adrenal glands. Three preservation methods (fixed in formaldehyde, snap-frozen, or cryopreserved) are used to facilitate diverse downstream applications such as proteomics, metabolomics, transcriptomics, epigenomics, microbiomics, neuroanatomy, biomarker discovery, and other cellular and molecular approaches. To date, >20,000 samples have been collected from over 1000 unique animals and made available free of charge to non-profit institutions through https://www.cocainebiobank.org/ and https://www.oxycodonebiobank.org/.


Subject(s)
Behavior, Addictive , Cocaine-Related Disorders , Cocaine , Animals , Biological Specimen Banks , Oxycodone/therapeutic use , Rats , Rats, Sprague-Dawley , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...