Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 4937, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418482

ABSTRACT

The inverse effects of creatine supplementation and sleep deprivation on high energy phosphates, neural creatine, and cognitive performances suggest that creatine is a suitable candidate for reducing the negative effects of sleep deprivation. With this, the main obstacle is the limited exogenous uptake by the central nervous system (CNS), making creatine only effective over a long-term diet of weeks. Thus far, only repeated dosing of creatine over weeks has been studied, yielding detectable changes in CNS levels. Based on the hypothesis that a high extracellular creatine availability and increased intracellular energy consumption will temporarily increase the central creatine uptake, subjects were orally administered a high single dose of creatinemonohydrate (0.35 g/kg) while performing cognitive tests during sleep deprivation. Two consecutive 31P-MRS scans, 1H-MRS, and cognitive tests were performed each at evening baseline, 3, 5.5, and 7.5 h after single dose creatine (0.35 g/kg) or placebo during sub-total 21 h sleep deprivation (SD). Our results show that creatine induces changes in PCr/Pi, ATP, tCr/tNAA, prevents a drop in pH level, and improves cognitive performance and processing speed. These outcomes suggest that a high single dose of creatine can partially reverse metabolic alterations and fatigue-related cognitive deterioration.


Subject(s)
Creatine , Sleep Deprivation , Humans , Creatine/pharmacology , Creatine/metabolism , Sleep Deprivation/metabolism , Central Nervous System/metabolism , Cognition/physiology , Phosphates/pharmacology
2.
Front Psychiatry ; 14: 1228438, 2023.
Article in English | MEDLINE | ID: mdl-37520217

ABSTRACT

Introduction: Sleep deprivation and electroconvulsive therapy (ECT) effectively ameliorate symptoms in major depressive disorder (MDD). In rodents, both are associated with an enhancement of cerebral adenosine levels, which in turn likely influence adenosinergic receptor expression. The aim of the current study was to investigate cerebral A1 adenosine receptor (A1AR) availability in patients with MDD as a potential mediating factor of antidepressant effects of ECT using [18F]CPFPX and positron emission tomography (PET). Methods: Regional A1AR availability was determined before and after a series of ECT applications (mean number ± SD 10.4 ± 1.2) in 14 subjects (4 males, mean age 49.5 ± 11.8 years). Clinical outcome, measured by neuropsychological testing, and ECT parameters were correlated with changes in A1AR availability. Results: ECT had a strong antidepressive effect (p < 0.01) while on average cerebral A1AR availability remained unaltered between pre-and post-ECT conditions (F = 0.65, p = 0.42, mean difference ± SD 3.93% ± 22.7%). There was no correlation between changes in clinical outcome parameters and regional A1AR availability, although individual patients showed striking bidirectional alterations of up to 30-40% in A1AR availability after ECT. Solely, for the mean seizure quality index of the applied ECTs a significant association with changes in A1AR availability was found (rs = -0.6, p = 0.02). Discussion: In the present study, therapeutically effective ECT treatment did not result in coherent changes of A1AR availability after a series of ECT treatments. These findings do not exclude a potential role for cerebral A1ARs in ECT, but shift attention to rather short-termed and adaptive mechanisms during ECT-related convulsive effects.

3.
Front Neurosci ; 17: 1077597, 2023.
Article in English | MEDLINE | ID: mdl-37008230

ABSTRACT

Introduction: Previous resting-state fMRI (Rs-fMRI) and positron emission tomography (PET) studies have shown that sleep deprivation (SD) affects both spontaneous brain activity and A1 adenosine receptor (A1AR) availability. Nevertheless, the hypothesis that the neuromodulatory adenosinergic system acts as regulator of the individual neuronal activity remains unexplored. Methods: Therefore, fourteen young men underwent Rs-fMRI, A1AR PET scans, and neuropsychological tests after 52 h of SD and after 14 h of recovery sleep. Results: Our findings suggested higher oscillations or regional homogeneity in multiple temporal and visual cortices, whereas decreased oscillations in cerebellum after sleep loss. At the same time, we found that connectivity strengths increased in sensorimotor areas and decreased in subcortical areas and cerebellum. Discussion: Moreover, negative correlations between A1AR availability and rs-fMRI metrics of BOLD activity in the left superior/middle temporal gyrus and left postcentral gyrus of the human brain provide new insights into the molecular basis of neuronal responses induced by high homeostatic sleep pressure.

4.
Biomedicines ; 10(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35740281

ABSTRACT

There is a controversy about potentially positive or negative effects of caffeine consumption on onset and disease progression of neurodegenerative diseases such as Huntington's Disease (HD). On the molecular level, the psychoactive drug caffeine targets in particular adenosine receptors (AR) as a nonselective antagonist. The aim of this study was to evaluate clinical effects of caffeine consumption in patients suffering from premanifest and motor-manifest HD. Data of the global observational study ENROLL-HD were used, in order to analyze the course of HD regarding symptoms onset, motor, functional, cognitive and psychiatric parameters, using cross-sectional and longitudinal data of up to three years. We split premanifest and manifest participants into two subgroups: consumers of >3 cups of caffeine (coffee, cola or black tea) per day (>375 mL) vs. subjects without caffeine consumption. Data were analyzed using ANCOVA-analyses for cross-sectional and repeated measures analysis of variance for longitudinal parameters in IBM SPSS Statistics V.28. Within n = 21,045 participants, we identified n = 1901 premanifest and n = 4072 manifest HD patients consuming >3 cups of caffeine/day vs. n = 841 premanifest and n = 2243 manifest subjects without consumption. Manifest HD patients consuming >3 cups exhibited a significantly better performance in a series of neuropsychological tests. They also showed at the median a later onset of symptoms (all p < 0.001), and, during follow-up, less motor, functional and cognitive impairments in the majority of tests (all p < 0.050). In contrast, there were no beneficial caffeine-related effects on neuropsychological performance in premanifest HD mutation carriers. They showed even worse cognitive performances in stroop color naming (SCNT) and stroop color reading (SWRT) tests (all p < 0.050) and revealed more anxiety, depression and irritability subscores in comparison to premanifest participants without caffeine consumption. Similarly, higher self-reported anxiety and irritability were observed in genotype negative/control group high dose caffeine drinkers, associated with a slightly better performance in some cognitive tasks (all p < 0.050). The analysis of the impact of caffeine consumption in the largest real-world cohort of HD mutation carriers revealed beneficial effects on neuropsychological performance as well as manifestation and course of disease in manifest HD patients while premanifest HD mutation carrier showed no neuropsychological improvements, but worse cognitive performances in some tasks and exhibited more severe signs of psychiatric impairment. Our data point to state-related psychomotor-stimulant effects of caffeine in HD that might be related to regulatory effects at cerebral adenosine receptors. Further studies are required to validate findings, exclude potential other unknown biasing factors such as physical activity, pharmacological interventions, gender differences or chronic habitual influences and test for dosage related effects.

5.
Transl Psychiatry ; 12(1): 6, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013095

ABSTRACT

Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.


Subject(s)
Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5 , Carbon Radioisotopes , Electroencephalography , Humans , Oximes , Pyridines
6.
Neuroimage ; 221: 117160, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32679251

ABSTRACT

The use of hybrid PET/MR imaging facilitates the simultaneous investigation of challenge-related changes in ligand binding to neuroreceptors using PET, while concurrently measuring neuroactivation or blood flow with MRI. Having attained a steady state of the PET radiotracer using a bolus-infusion protocol, it is possible to observe alterations in ligand neuroreceptor binding through changes in distribution volumes. Here, we present an iterative procedure for establishing an administration scheme to obtain steady state [11C]flumazenil concentrations in grey matter in the human brain. In order to achieve a steady state in the shortest possible time, the bolus infusion ratio from a previous examination was adapted to fit the subsequent examination. 17 male volunteers were included in the study. Boli and infusions with different weightings were given to the subjects and were characterised by kbol values from 74 â€‹min down to 42 â€‹min. Metabolite analysis was used to ascertain the value of unmetabolised flumazenil in the plasma, and PET imaging was used to assess its binding in the grey matter. The flumazenil time-activity curves (TACs) in the brain were decomposed into activity contributions from pure grey and white matter and analysed for 12 â€‹vol of interest (VOIs). The curves highlighted a large variability in metabolic rates between the subjects, with kbol â€‹= â€‹54.3 â€‹min being a reliable value to provide flumazenil equilibrium conditions in the majority of the VOIs and cases. The distribution volume of flumazenil in all 12 VOIs was determined.


Subject(s)
Carbon Radioisotopes/administration & dosage , Flumazenil , GABA Modulators , Gray Matter , Magnetic Resonance Imaging , Positron-Emission Tomography , Sensory Receptor Cells , White Matter , Adult , Flumazenil/administration & dosage , Flumazenil/blood , Flumazenil/pharmacokinetics , GABA Modulators/administration & dosage , GABA Modulators/blood , GABA Modulators/pharmacokinetics , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/metabolism , Humans , Male , Multimodal Imaging , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , White Matter/diagnostic imaging , White Matter/drug effects , White Matter/metabolism , Young Adult
7.
Hum Brain Mapp ; 41(4): 994-1005, 2020 03.
Article in English | MEDLINE | ID: mdl-31680379

ABSTRACT

Sleep deprivation (SD) could amplify the temporal fluctuation of spontaneous brain activities that reflect different arousal levels using a dynamic functional connectivity (dFC) approach. Therefore, we intended to evaluate the test-retest reliability of dFC characteristics during rested wakefulness (RW), and to explore how the properties of these dynamic connectivity states were affected by extended durations of acute sleep loss (28/52 hr). We acquired resting-state fMRI and neuropsychological datasets in two independent studies: (a) twice during RW and once after 28 hr of SD (n = 15) and (b) after 52 hr of SD and after 14 hr of recovery sleep (RS; n = 14). Sliding-window correlations approach was applied to estimate their covariance matrices and corresponding three connectivity states were generated. The test-retest reliability of dFC properties demonstrated mean dwell time and fraction of connectivity states were reliable. After SD, the mean dwell time of a specific state, featured by strong subcortical-cortical anticorrelations, was significantly increased. Conversely, another globally hypoconnected state was significantly decreased. Subjective sleepiness and objective performances were separately positive and negative correlated with the increased and decreased state. Two brain connectivity states and their alterations might be sufficiently sensitive to reflect changes in the dynamics of brain mental activities after sleep loss.


Subject(s)
Brain/physiopathology , Connectome/methods , Nerve Net/physiopathology , Sleep Deprivation/physiopathology , Actigraphy , Adult , Brain/diagnostic imaging , Connectome/standards , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Sleep Deprivation/diagnostic imaging , Young Adult
8.
J Neurosci ; 38(49): 10552-10565, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30282723

ABSTRACT

Scientists have hypothesized that the availability of phosphocreatine (PCr) and its ratio to inorganic phosphate (Pi) in cerebral tissue form a substrate of wakefulness. It follows then, according to this hypothesis, that the exhaustion of PCr and the decline in the ratio of PCr to Pi form a substrate of fatigue. We used 31P-magnetic resonance spectroscopy (31P-MRS) to investigate quantitative levels of PCr, the γ-signal of ATP, and Pi in 30 healthy humans (18 female) in the morning, in the afternoon, and while napping (n = 15) versus awake controls (n = 10). Levels of PCr (2.40 mM at 9 A.M.) decreased by 7.0 ± 0.8% (p = 7.1 × 10-6, t = -5.5) in the left thalamus between 9 A.M. and 5 P.M. Inversely, Pi (0.74 mM at 9 A.M.) increased by 17.1 ± 5% (p = 0.005, t = 3.1) and pH levels dropped by 0.14 ± 0.07 (p = 0.002; t = 3.6). Following a 20 min nap after 5 P.M., local PCr, Pi, and pH were restored to morning levels. We did not find respective significant changes in the contralateral thalamus or in other investigated brain regions. Left hemispheric PCr was signficantly lower than right hemispheric PCr only at 5 P.M. in the thalamus and at all conditions in the temporal region. Thus, cerebral daytime-related and sleep-related molecular changes are accessible in vivo Prominent changes were identified in the thalamus. This region is heavily relied on for a series of energy-consuming tasks, such as the relay of sensory information to the cortex. Furthermore, our data confirm that lateralization of brain function is regionally dynamic and includes PCr.SIGNIFICANCE STATEMENT The metabolites phosphocreatine (PCr) and inorganic phosphate (Pi) are assumed to inversely reflect the cellular energy load. This study detected a diurnal decrease of intracellular PCr and a nap-associated reincrease in the left thalamus. Pi behaved inversely. This outcome corroborates the role of the thalamus as a region of high energy consumption in agreement with its function as a gateway that relays and modulates information flow. Conversely to the dynamic lateralization of thalamic PCr, a constantly significant lateralization was observed in other regions. Increasing fatigue over the course of the day may also be a matter of cerebral energy supply. Comparatively fast restoration of that supply may be part of the biological basis for the recreational value of "power napping."


Subject(s)
Phosphocreatine/metabolism , Sleep/physiology , Thalamus/diagnostic imaging , Thalamus/metabolism , Wakefulness/physiology , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Phosphates/metabolism , Young Adult
9.
Proc Natl Acad Sci U S A ; 114(16): 4243-4248, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28373571

ABSTRACT

Adenosine and functional A1 adenosine receptor (A1AR) availability are supposed to mediate sleep-wake regulation and cognitive performance. We hypothesized that cerebral A1AR availability after an extended wake period decreases to a well-rested state after recovery sleep. [18F]CPFPX positron emission tomography was used to quantify A1AR availability in 15 healthy male adults after 52 h of sleep deprivation and following 14 h of recovery sleep. Data were additionally compared with A1AR values after 8 h of baseline sleep from an earlier dataset. Polysomnography, cognitive performance, and sleepiness were monitored. Recovery from sleep deprivation was associated with a decrease in A1AR availability in several brain regions, ranging from 11% (insula) to 14% (striatum). A1AR availabilities after recovery did not differ from baseline sleep in the control group. The degree of performance impairment, sleepiness, and homeostatic sleep-pressure response to sleep deprivation correlated negatively with the decrease in A1AR availability. Sleep deprivation resulted in a higher A1AR availability in the human brain. The increase that was observed after 52 h of wakefulness was restored to control levels during a 14-h recovery sleep episode. Individuals with a large increase in A1AR availability were more resilient to sleep-loss effects than those with a subtle increase. This pattern implies that differences in endogenous adenosine and A1AR availability might be causal for individual responses to sleep loss.


Subject(s)
Adenosine/metabolism , Brain/metabolism , Receptor, Adenosine A1/metabolism , Sleep Deprivation/physiopathology , Sleep/physiology , Wakefulness/physiology , Adult , Humans , Male
10.
BMC Neurosci ; 15: 98, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25142911

ABSTRACT

BACKGROUND: Neuropsychiatric affection involving extrapyramidal symptoms is a frequent component of Wilson's disease (WD). WD is caused by a genetic defect of the copper (Cu) efflux pump ATPase7B. Mouse strains with natural or engineered transgenic defects of the Atp7b gene have served as model of WD. These show a gradual accumulation and concentration of Cu in liver, kidneys, and brain. However, still little is known about the regional distribution of Cu inside the brain, its influence on other metals and subsequent pathophysiological mechanisms. We have applied laser ablation inductively coupled plasma mass spectrometry and performed comparative metal bio-imaging in brain sections of wild type and Atp7b null mice in the age range of 11-24 months. Messenger RNA and protein expression of a panel of inflammatory markers were assessed using RT-PCR and Western blots of brain homogenates. RESULTS: We could confirm Cu accumulation in brain parenchyma by a factor of two in WD (5.5 µg g(-1) in the cortex) vs. controls (2.7 µg g(-1)) that was already fully established at 11 months. In the periventricular regions (PVR) known as structures of prominent Cu content, Cu was reduced in turn by a factor of 3. This corroborates the view of the PVR as efflux compartments with active transport of Cu into the cerebrospinal fluid. Furthermore, the gradient of Cu increasing downstream the PVR was relieved. Otherwise the architecture of Cu distribution was essentially maintained. Zinc (Zn) was increased by up to 40% especially in regions of high Cu but not in typical Zn accumulator regions, a side effect due to the fact that Zn is to some degree a substrate of Cu-ATPases. The concentrations of iron (Fe) and manganese (Mn) were constant throughout all regions assessed. Inflammatory markers TNF-α, TIMP-1 and the capillary proliferation marker α-SMA were increased by a factor of 2-3 in WD. CONCLUSIONS: This study confirmed stable cerebral Cu accumulation in parenchyma and discovered reduced Cu in cerebrospinal fluid in Atp7b null mice underlining the diagnostic value of micro-local analytical techniques.


Subject(s)
Brain/metabolism , Copper/metabolism , Hepatolenticular Degeneration/metabolism , Iron/metabolism , Manganese/metabolism , Zinc/metabolism , Actins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Aging/metabolism , Animals , Blotting, Western , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Copper/cerebrospinal fluid , Copper-Transporting ATPases , Disease Models, Animal , Disease Progression , Hepatolenticular Degeneration/cerebrospinal fluid , Laser Therapy/methods , Mass Spectrometry/methods , Mice, 129 Strain , Mice, Knockout , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
PLoS One ; 9(7): e102397, 2014.
Article in English | MEDLINE | ID: mdl-25028935

ABSTRACT

With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2'-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3',5'-di-O-acetyl-2'-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3',5'-di-O-pivaloyl-2'-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31-47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.


Subject(s)
Brain Neoplasms/diagnosis , Idoxuridine/chemistry , Iodine Radioisotopes/chemistry , Radioactive Tracers , Animals , Cell Line, Tumor , Chromatography, High Pressure Liquid , Esterification , Humans , Idoxuridine/pharmacokinetics , Iodine Radioisotopes/pharmacokinetics , Mice , Thymidine Phosphorylase/metabolism
12.
Anal Chim Acta ; 835: 1-18, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24952624

ABSTRACT

Bioimaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers the capability to quantify trace elements and isotopes within tissue sections with a spatial resolution ranging about 10-100 µm. Distribution analysis adds to clarifying basic questions of biomedical research and enables bioaccumulation and bioavailability studies for ecological and toxicological risk assessment in humans, animals and plants. Major application fields of mass spectrometry imaging (MSI) and metallomics have been in brain and cancer research, animal model validation, drug development and plant science. Here we give an overview of latest achievements in methods and applications. Recent improvements in ablation systems, operation and cell design enabled progressively better spatial resolutions down to 1 µm. Meanwhile, a body of research has accumulated covering basic principles of the element architecture in animals and plants that could consistently be reproduced by several laboratories such as the distribution of Fe, Cu, Zn in rodent brain. Several studies investigated the distribution and delivery of metallo-drugs in animals. Hyper-accumulating plants and pollution indicator organisms have been the key topics in environmental science. Increasingly, larger series of samples are analyzed, may it be in the frame of comparisons between intervention and control groups, of time kinetics or of three-dimensional atlas approaches.


Subject(s)
Laser Therapy/methods , Mass Spectrometry/methods , Spectrophotometry, Atomic/methods , Trace Elements/analysis , Animals , Humans
13.
Eur J Nucl Med Mol Imaging ; 41(6): 1210-20, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24566949

ABSTRACT

PURPOSE: To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington's disease (HD). METHODS: We quantified the cerebral binding potential (BP ND) of the A1AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [(18) F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36). RESULTS: Cerebral A1AR values of preHD-A subjects were generally higher than those of controls (by up to 31%, p < .01, in the thalamus on average). Across stages a successive reduction of A1AR BPND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25%, p < .01, in the caudatus and amygdala. There was a strong correlation between A1AR BP ND and years to onset. Before onset of HD, the assumed annual rates of change of A1AR density were -1.2% in the caudatus, -1.7% in the thalamus and -3.4% in the amygdala, while the corresponding volume losses amounted to 0.6%, 0.1% and 0.2%, respectively. CONCLUSIONS: Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism.


Subject(s)
Huntington Disease/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Receptor, Adenosine A1/metabolism , Xanthines/pharmacokinetics , Adult , Age of Onset , Aged , Brain/metabolism , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Huntington Disease/diagnosis , Male , Middle Aged , Neuropsychological Tests , Protein Binding , Tissue Distribution
14.
Nucl Med Biol ; 41(1): 1-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120220

ABSTRACT

INTRODUCTION: The selective 5-hydroxytryptamine type 2a receptor (5-HT(2A)R) radiotracer [(18)F]altanserin is a promising ligand for in vivo brain imaging in rodents. However, [(18)F]altanserin is a substrate of P-glycoprotein (P-gp) in rats. Its applicability might therefore be constrained by both a differential expression of P-gp under pathological conditions, e.g. epilepsy, and its relatively low cerebral uptake. The aim of the present study was therefore twofold: (i) to investigate whether inhibition of multidrug transporters (MDT) is suitable to enhance the cerebral uptake of [(18)F]altanserin in vivo and (ii) to test different pharmacokinetic, particularly reference tissue-based models for exact quantification of 5-HT(2A)R densities in the rat brain. METHODS: Eighteen Sprague-Dawley rats, either treated with the MDT inhibitor cyclosporine A (CsA, 50 mg/kg, n=8) or vehicle (n=10) underwent 180-min PET scans with arterial blood sampling. Kinetic analyses of tissue time-activity curves (TACs) were performed to validate invasive and non-invasive pharmacokinetic models. RESULTS: CsA application lead to a two- to threefold increase of [(18)F]altanserin uptake in different brain regions and showed a trend toward higher binding potentials (BP(ND)) of the radioligand. CONCLUSIONS: MDT inhibition led to an increased cerebral uptake of [(18)F]altanserin but did not improve the reliability of BP(ND) as a non-invasive estimate of 5-HT(2A)R. This finding is most probable caused by the heterogeneous distribution of P-gp in the rat brain and its incomplete blockade in the reference region (cerebellum). Differential MDT expressions in experimental animal models or pathological conditions are therefore likely to influence the applicability of imaging protocols and have to be carefully evaluated.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Fluorine Radioisotopes , Ketanserin/analogs & derivatives , Positron-Emission Tomography , Receptor, Serotonin, 5-HT2A/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Animals , Binding, Competitive/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/drug effects , Cyclosporine/pharmacology , Ketanserin/metabolism , Ketanserin/pharmacokinetics , Ligands , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley
15.
Psychoneuroendocrinology ; 39: 74-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24275006

ABSTRACT

Evidence from animal studies suggests that the social attraction and bonding effects of the neuropeptide oxytocin (OXT) are mediated by its modulation of dopamine (DA) release in brain reward centers, but this has not yet been demonstrated in humans. DA release can be measured by positron emission tomography (PET) using the radioligand [11C]raclopride. Its binding to DA D2 receptors (D2R) is sensitive and reciprocally related to endogenous DA, especially in the striatum. In a randomized double-blind placebo-controlled within-subjects trial on 18 adult male volunteers we combined [11C]raclopride PET and a facial attractiveness rating task to establish whether intranasal OXT (24 IU) increased both the perceived attractiveness of unfamiliar female faces and striatal DA release compared with placebo administration. While our behavioral data confirmed that subjects rated unfamiliar female faces as more attractive following OXT treatment, and this correlated with an increased perfusion rate in the striatum, there was no evidence for altered [11C]raclopride binding in the striatum or pallidum. Instead under OXT we rather observed an increased [11C]raclopride binding and reduced perfusion rate in subregions of the right dorsomedial prefrontal gyrus and superior parietal gyrus. The absence of OXT effects on dopamine release and D2 receptors in brain reward centers, despite increased striatal activity, implies that the peptide may facilitate perceived attraction via non-dopaminergic actions.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Oxytocin/pharmacology , Adult , Corpus Striatum/diagnostic imaging , Corpus Striatum/drug effects , Double-Blind Method , Face , Female , Humans , Male , Raclopride/pharmacology , Radionuclide Imaging
16.
Neuroimage ; 79: 191-200, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23631981

ABSTRACT

A previous clinical trial studied the effect of long-term treatment with levodopa (LD) or the dopamine agonist pramipexole (PPX) on disease progression in Parkinson disease using SPECT with the dopamine transporter (DAT)-radioligand [(123)I]ß-CIT as surrogate marker. [(123)I]ß-CIT binding declined to significantly lower levels in patients receiving LD compared to PPX. However, the interpretation of this difference as LD-induced neurotoxicity, PPX-induced neuroprotection/-regeneration, or only drug-induced regulatory changes of DAT-availability remained controversial. To address this question experimentally, we induced a subtotal lesion of the substantia nigra in mice by bilateral injection of the neurotoxin 6-hydroxydopamine. After 4 weeks, mice were treated for 20 weeks orally with LD (100mg/kg/day) or PPX (3mg/kg/day), or water (vehicle) only. The integrity of nigrostriatal projections was assessed by repeated [(123)I]FP-CIT SPECT in vivo and by immunostaining for DAT and the dopamine-synthesizing enzyme tyrosine hydroxylase (TH) after sacrifice. In sham-lesioned mice, we found that both LD and PPX treatment significantly decreased the striatal FP-CIT binding (LD: -21%; PPX: -14%) and TH-immunoreactivity (LD: -42%; PPX: -45%), but increased DAT-immunoreactivity (LD: +42%; PPX: +33%) compared to controls without dopaminergic treatment. In 6-hydroxydopamine-lesioned mice, however, neither LD nor PPX significantly influenced the stably reduced FP-CIT SPECT signal (LD: -66%; PPX: -66%; controls -66%), TH-immunoreactivity (LD: -70%; PPX: -72%; controls: -77%) and DAT-immunoreactivity (LD: -70%; PPX: -75%; controls: -75%) in the striatum or the number of TH-positive cells in the substantia nigra (LD: -88%; PPX: -88%; controls: -86%), compared to lesioned mice without dopaminergic treatment. In conclusion, chronic dopaminergic stimulation with LD or PPX induced similar adaptive presynaptic changes in healthy mice, but no discernible changes in severely lesioned mice. These findings allow to more reliably interpret the results from clinical trials using neuroimaging of DAT as surrogate parameter.


Subject(s)
Benzothiazoles/administration & dosage , Dopamine Plasma Membrane Transport Proteins/metabolism , Levodopa/administration & dosage , Neuronal Plasticity/drug effects , Parkinson Disease/metabolism , Presynaptic Terminals/metabolism , Tropanes/pharmacokinetics , Animals , Antiparkinson Agents/administration & dosage , Dopamine Agonists/administration & dosage , Longitudinal Studies , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/drug therapy , Pramipexole , Presynaptic Terminals/drug effects , Radiopharmaceuticals/pharmacokinetics , Tomography, Emission-Computed, Single-Photon/methods , Treatment Outcome
17.
Mol Imaging Biol ; 15(4): 456-67, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23456885

ABSTRACT

PURPOSE: While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats. PROCEDURES: Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions. In vivo 5-HT2AR quantification with PET was validated by in vitro autoradiographic saturation experiments in the same animals. RESULT: Overall brain uptake of [18F]altanserin was reliably quantified by invasive and non-invasive models with the cerebellum as reference region shown by linear correlation of outcome parameters. Unlike in humans, no lipophilic metabolites occurred so that brain activity derived solely from parent compound. PET data correlated very well with in vitro autoradiographic data of the same animals. CONCLUSION: [18F]Altanserin PET is a reliable tool for in vivo quantification of 5-HT2AR availability in albino rats. Models based on both blood input and reference tissue describe radiotracer kinetics adequately. Low cerebral tracer uptake might, however, cause restrictions in experimental usage.


Subject(s)
Brain/diagnostic imaging , Fluorine Radioisotopes/pharmacokinetics , Ketanserin/analogs & derivatives , Positron-Emission Tomography , Receptor, Serotonin, 5-HT2A/metabolism , Animals , Brain/blood supply , Cerebral Arteries/diagnostic imaging , Ketanserin/pharmacokinetics , Kinetics , Male , Models, Biological , Protein Binding , Rats , Rats, Sprague-Dawley , Regression Analysis , Time Factors , Tissue Distribution
18.
Sleep ; 35(12): 1615-23, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23204604

ABSTRACT

STUDY OBJECTIVES: Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT(2A)R) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. DESIGN: Volunteers were tested twice with the subtype-selective radiotracer [(18)F]altanserin and positron emission tomography (PET) for imaging of 5-HT(2A)Rs at baseline and after 24 h of sleep deprivation. [(18)F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. SETTING: Sleep laboratory and neuroimaging center. PATIENTS OR PARTICIPANTS: Eighteen healthy volunteers. INTERVENTIONS: Sleep deprivation. MEASUREMENTS AND RESULTS: A total of 24 hours of sleep deprivation led to a 9.6% increase of [(18)F]altanserin binding on neocortical 5-HT(2A) receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. CONCLUSIONS: This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT(2A)R binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain.


Subject(s)
Brain/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Sleep Deprivation/metabolism , Adult , Case-Control Studies , Electroencephalography , Female , Fluorine Radioisotopes , Humans , Ketanserin/analogs & derivatives , Male , Middle Aged , Positron-Emission Tomography , Psychomotor Performance , Sleep Deprivation/physiopathology , Sleep Deprivation/psychology , Time Factors
19.
J Nucl Med ; 53(11): 1723-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22966134

ABSTRACT

UNLABELLED: Caffeine is the neuroactive agent in coffee and tea and is a broadly consumed stimulant. It is a nonselective antagonist of the neuromodulator adenosine and, if applied in commonly consumed doses, evokes its stimulating effects through the blockade of adenosine receptors. (18)F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ((18)F-CPFPX) has been established as a highly selective and affine PET ligand for the A(1) adenosine receptor (A(1)AR). The objective of the present study was to visualize and quantify the in vivo occupancy of the human cerebral A(1)AR by caffeine using (18)F-CPFPX and PET. METHODS: Fifteen subjects (age range, 24-68 y) underwent a 140-min bolus-plus-constant-infusion PET experiment after at least 36 h of caffeine abstinence. Metabolite-corrected blood data were used to calculate steady-state distribution volumes (V(T)) during the baseline condition of the scan between 70 and 90 min. Subsequently, subjects received a 10-min infusion of varying concentrations (0.5-4.3 mg/kg of body weight) of caffeine at 90 min. Occupancy V(T) of the A(1)AR was thereafter estimated using data acquired between 120 and 140 min. Occupancy levels were calculated using the Lassen plot, from which the inhibitory concentrations of 50% were derived. Plasma levels of caffeine were determined at regular intervals. One subject received an intravenous vehicle as a placebo. RESULTS: Caffeine displaced 5%-44% of (18)F-CPFPX binding in a concentration-dependent manner. There was no change of radioligand binding after the administration of placebo. Half-maximal displacement was achieved at a plasma caffeine concentration of 67 µM, which corresponds to 450 mg in a 70-kg subject or approximately 4.5 cups of coffee. CONCLUSION: Given a biologic half-life of about 5 h, caffeine might therefore occupy up to 50% of the cerebral A(1)AR when caffeinated beverages are repeatedly consumed during a day. Furthermore, the present study provides evidence that (18)F-CPFPX PET is suitable for studying the cerebral actions of caffeine, the most popular neurostimulant worldwide.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Caffeine/metabolism , Positron-Emission Tomography , Receptor, Adenosine A1/metabolism , Xanthines/metabolism , Adult , Brain/drug effects , Caffeine/blood , Caffeine/pharmacology , Central Nervous System Stimulants/blood , Central Nervous System Stimulants/metabolism , Central Nervous System Stimulants/pharmacology , Humans , Male , Young Adult
20.
Anal Chem ; 84(7): 3170-8, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22413784

ABSTRACT

Several complementary mass spectrometric imaging techniques allow mapping of various analytes within biological tissue sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) quantitatively detects elements and isotopes with very high sensitivity and a particularly high dynamical range. Matrix-assisted laser desorption/ionization ion mobility mass spectrometry (MALDI-IM-MS) allows a pixel-by-pixel classification and identification of biomolecules. In order to dispose of the healthy hemisphere as an internal calibrant in addition to routinely used external standards, adjacent brain sections of mice with a unilateral 6-OHDA lesion of the medial forebrain bundle were chosen as exemplary samples. We demonstrate a comprehensive way of data acquisition and analysis by coregistering mass spectrometric data on photomicrographs as common reference space and thus providing trimodal spatial information. Registering subsequent planar element maps yielded continuous 3-dimensional data sets. Furthermore, we introduce a correction of MSI data for variable slice thickness applicable to all MSI techniques. In the present case, we observed increased concentrations of iron, manganese, and copper in the lesioned substantia nigra while monounsaturated lipid levels were decreased in the identical region of interest. Our techniques provide new insights into the intricate spatial relationship of morphology and chemistry within tissue.


Subject(s)
Mass Spectrometry/methods , Microtechnology/methods , Molecular Imaging/methods , Animals , Lasers , Male , Mice , Optical Phenomena , Oxidopamine/pharmacology , Prosencephalon/drug effects , Prosencephalon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...