Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37887048

ABSTRACT

Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes' translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene' sets' content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.

2.
Biology (Basel) ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36671807

ABSTRACT

We propose the trait-based method for quantifying the activity of functional groups in the human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes in the microbial community comprised of the following functional groups: butyrate-producers, acetogens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional analysis of metatranscriptomic data by focusing on the ecological level of the community under study. To develop the method, we used published data obtained in a carefully controlled environment and from a synthetic microbial community, where the problem of ambiguity between functionality and taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification provides prospects for the application of this method for analyzing natural communities of the human intestinal microbiota.

3.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233299

ABSTRACT

Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.


Subject(s)
Computational Biology , Protein Biosynthesis , Codon/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism
4.
J Pers Med ; 12(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35055368

ABSTRACT

In this study, we collected and systemized diverse information related to depressive and anxiety disorders as the first step on the way to investigate the associations between molecular genetics, electrophysiological, behavioral, and psychological characteristics of people. Keeping that in mind, we developed an internet resource including a database and tools for primary presentation of the collected data of genetic factors, the results of electroencephalography (EEG) tests, and psychological questionnaires. The sample of our study was 1010 people from different regions of Russia. We created the integrated ICBrainDB database that enables users to easily access, download, and further process information about individual behavioral characteristics and psychophysiological responses along with inherited trait data. The data obtained can be useful in training neural networks and in machine learning construction processes in Big Data analysis. We believe that the existence of such a resource will play an important role in the further search for associations of genetic factors and EEG markers of depression.

5.
PLoS One ; 13(3): e0194464, 2018.
Article in English | MEDLINE | ID: mdl-29596533

ABSTRACT

Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.


Subject(s)
Gene Expression Regulation/physiology , Gene Regulatory Networks/physiology , Models, Genetic , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Transcription Factors/genetics
6.
Bioinformatics ; 33(6): 923-925, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28039164

ABSTRACT

Motivation: Protein synthesis is not a straight forward process and one gene locus can produce many isoforms, for example, by starting mRNA translation from alternative start sites. altORF evaluator (altORFev) predicts alternative open reading frames within eukaryotic mRNA translated by a linear scanning mechanism and its modifications (leaky scanning and reinitiation). The program reveals the efficiently translated altORFs recognized by the majority of 40S ribosomal subunits landing on the 5'-end of an mRNA. This information aids to reveal the functions of eukaryotic genes connected to synthesis of either unknown isoforms of annotated proteins or new unrelated polypeptides. Availability and Implementation: altORFev is available at http://www.bionet.nsc.ru/AUGWeb/ and has been developed in Java 1.8 using the BioJava library; and the Vaadin framework to produce the web service. Contact: ak@bionet.nsc.ru.


Subject(s)
Genomics/methods , Open Reading Frames , RNA, Messenger/metabolism , Software , Eukaryota/genetics , Protein Biosynthesis , Ribosome Subunits, Small, Eukaryotic/metabolism , Sequence Analysis, RNA/methods
7.
In Silico Biol ; 11(3-4): 125-35, 2011.
Article in English | MEDLINE | ID: mdl-22935966

ABSTRACT

In this paper we consider the recent advances in methodology for modeling of prokaryotic communities evolution and new features of the software package "Haploid evolutionary constructor" (http://evol-constructor.bionet.nsc.ru). We show the principles of building complex computer models in our software tool. These models describe several levels of biological organization: genetic, metabolic, population, ecological. New features of the haploid evolutionary constructor include the modeling of gene networks and phage infections.


Subject(s)
Evolution, Molecular , Haploidy , Algorithms , Gene Regulatory Networks , Genetics, Population , Software
8.
In Silico Biol ; 7(3): 261-75, 2007.
Article in English | MEDLINE | ID: mdl-18415976

ABSTRACT

An original modeling tool called Evolutionary Constructor has been proposed and described. Evolutionary Constructor combines the advantages of both generalized and portrait modeling and, additionally, provides an option to modify a current model's structure. The evolution of communities comprising atrophic ring-like network with the horizontal transfer of metabolism genes occurring among the communities has been modeled and presented. It has been demonstrated that a prolonged increase in the fitness of any single population that forms part of that trophic ring-like network of antagonistic communities will eventually lead that system to becoming absolutely dependent on environmental fluctuations. This result challenges the intuitive attitudes that the higher population fitness, the more stability is given to that population. Modeling of a system comprised by symbiotic communities has revealed that horizontal transfer confers a selective advantage not only on the acceptor population (which is up to expectations) but also on the donor population. It has therefore been demonstrated that horizontal transfer can be preserved by selection along evolution even without "selfish genes". Evolutionary Constructor can handle any phenotypic trait that is controlled genetically, epigenetically, etc., which extends the applicability of this tool to various processes of information transduction among populations, provided that these processes resemble horizontal gene transfer.


Subject(s)
Biological Evolution , Models, Biological , Models, Genetic , Animals , Fossils , Genotype , Mutation , Paleontology , Software
9.
In Silico Biol ; 2(2): 97-110, 2002.
Article in English | MEDLINE | ID: mdl-12066844

ABSTRACT

Almost all cellular processes in an organism are controlled by gene networks. Here we report on the analysis of gene networks functioning using two associated methods - data accumulation in GeneNet system and generalized chemical kinetic method for mathematical simulation of gene network functional dynamics. The technology of the usage of these methods is shown on the example of the gene network of macrophage activation.


Subject(s)
Computer Simulation , DNA/metabolism , Databases, Genetic , Genes , Algorithms , Computational Biology , Gene Expression Regulation , Humans , Information Storage and Retrieval , Internet , Lymphocyte Activation/physiology , Macrophages/physiology , Proteins/metabolism , RNA/metabolism , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...