Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wellcome Open Res ; 8: 193, 2023.
Article in English | MEDLINE | ID: mdl-37484481

ABSTRACT

Background: Understanding the magnitude of human exposure to mosquito biting is fundamental to reduce pathogen transmission. Here we report on a study quantifying the levels of mosquitoes attacking humans throughout the night in a rural area of Southern Mozambique. Methods: Surveys were carried out in Massavasse village, southern Mozambique. The abundance and composition of host-seeking mosquito communities at night were assessed by human-landing catches (HLC) at one-hour intervals. Periods when people were located predominantly outdoors or indoors were used to estimate the amount of residents' exposure to mosquito bites in either location, to explore the potential impact a bed net could have had in reducing biting by each vector species. Results: A total of 69,758 host-seeking female mosquitoes comprising 23 species in four genera were collected. The exposure to biting by virtually all vector species was consistently high outdoors, typically at early evening and morning, with exception of An. gambiae s.l which was likely of biting a person with nearly same intensity indoors and outdoors throughout the night. Bed nets use could have reduced biting by An. gambiae s.l (dominated by An. arabiensis), Ma. africana, Ma. uniformis, Cx. pipiens, Cx. antennatus, and Cx. poicilipes by 53%, 47%, 46%, 38%, 31%, and 28% respectively, compared to non-users. Conversely, a bed net user would have had little protection against An. pharoensis, An. ziemanni, An. tenebrosus, and Cx. tritaeniorhynchus biting exposures. Conclusions: This study showed that Massavasse residents were exposed to high levels of outdoor biting by malaria and arbovirus vectors that abound in the village. The findings help to identify entomological drivers of persistent malaria transmission in Mozambique and identify a wide range of arbovirus vectors nocturnally active in rural areas, many with outbreak potential. The study highlights the need for a surveillance system for monitoring arboviral diseases vectors in Mozambique.

2.
Wellcome Open Res ; 8: 455, 2023.
Article in English | MEDLINE | ID: mdl-38644931

ABSTRACT

Background: The human biting rate (MBR) and entomological inoculation rate (EIR) are common parameters routinely used to measure the risk of malaria transmission. Both parameters can be estimated using human landing catches (HLC). Although it is considered the gold-standard, HLC puts collectors at higher risk of infection with mosquito-transmitted pathogens. Methods: A novel exposure-free host-seeking mosquito electrocution trap, the Shockwè trap (SHK), was developed and its efficiency for monitoring mosquito community composition and abundance was compared with human landing catches (HLC) as the gold-standard. Field experiments were performed in Massavasse village, southern Mozambique. Simultaneous indoor and outdoor collections of nocturnal host-seeking mosquitoes were carried out using the SHK and HLC methods. The relative sampling efficiency of SHK was estimated as the ratio of the numbers of mosquitoes caught in SHK compared HLC. Proportionality and density-dependence between SHK and HLC catches were estimated by mean of Bayesian regression approaches. Results: A total of 69,758 and 27,359 host-seeking mosquitoes comprising nineteen species and four genera, were collected by HLC and SHK respectively. In general, SHK and HLC sampled similar numbers of mosquito species, with the exceptions of the least common species Aedes sudanensis, Ae. subargenteus, and Coquillettidia versicolor that were caught only by HLC. The relative sampling efficiency and proportionality between SHK and matched HLC catches varied greatly between species and collection site. However, all mosquitoes collected by SHK were unfed, confirming the Shockwè trap design's performance and reliability as a successful mosquito exposure free sampling approach. Conclusions: Results demonstrate that SHK is a safe and reliable human-exposure free device for monitoring the occurrence of a wide range of mosquito, including major malaria and arboviruses vector species. However, improvements are needed to increase its sampling efficiency for less abundant mosquito species.

SELECTION OF CITATIONS
SEARCH DETAIL
...