Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 10(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066027

ABSTRACT

Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity.

2.
Int J Mol Sci ; 21(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349261

ABSTRACT

Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.


Subject(s)
Alveolar Epithelial Cells/metabolism , Glycocalyx/metabolism , Pulmonary Surfactants/metabolism , Respiratory Mucosa/metabolism , Alveolar Epithelial Cells/ultrastructure , Animals , Glycocalyx/ultrastructure , Humans , Pulmonary Alveoli/physiology , Pulmonary Alveoli/ultrastructure , Respiratory Mucosa/ultrastructure
3.
Front Physiol ; 11: 291, 2020.
Article in English | MEDLINE | ID: mdl-32308629

ABSTRACT

Intravital microscopy (IVM) offers unique possibilities for the observation of biological processes and disease related mechanisms in vivo. Especially for anatomically complex and dynamic organs such as the lung and its main functional unit, the alveolus, IVM provides exclusive advantages in terms of spatial and temporal resolution. By the use of lung windows, which have advanced and improved over time, direct access to the lung surface is provided. In this review we will discuss two main topics, namely alveolar dynamics and perfusion from the perspective of IVM-based studies. Of special interest are unanswered questions regarding alveolar dynamics such as: What are physiologic alveolar dynamics? How do these dynamics change under pathologic conditions and how do those changes contribute to ventilator-induced lung injury? How can alveolar dynamics be targeted in a beneficial way? With respect to alveolar perfusion IVM has propelled our understanding of the pulmonary microcirculation and its perfusion, as well as pulmonary vasoreactivity, permeability and immunological aspects. Whereas the general mechanism behind these processes are understood, we still lack a proper understanding of the complex, multidimensional interplay between alveolar ventilation and microvascular perfusion, capillary recruitment, or vascular immune responses under physiologic and pathologic conditions. These are only part of the unanswered questions and problems, which we still have to overcome. IVM as the tool of choice might allow us to answer part of these questions within the next years or decades. As every method, IVM has advantages as well as limitations, which have to be taken into account for data analysis and interpretation, which will be addressed in this review.

4.
ACS Biomater Sci Eng ; 5(3): 1509-1517, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-33405625

ABSTRACT

Cell-sheet technology is a well-known method by which cells are grown on thermoswitchable substrates that become nonadhesive upon cooling, such that a complete layer of adherent cells, along with the produced extracellular matrix, detaches as a sheet. Polymers that exhibit a lower critical solution temperature (LCST) below physiological temperature in water, commonly poly(N-isopropylacrylamide) (PNIPAM), are covalently grafted or, for block copolymers, physisorbed onto substrates in a monomolecular thin film to achieve this. Consequently, such substrates, and the polymers required for film formation, can only be prepared in a chemical lab with profound macromolecular expertise. In this study, we present an easy and robust method to coat standard cell culture dishes with aqueous solutions of commercially available poly(2-n-propyl-2-oxazoline) (PnPrOx), a polymer that exhibits LCST behavior. Different standard cell culture dishes were repeatedly coated with 0.1 wt % aqueous solutions of PnPrOx and dried in an oven to create a fully covered and thermoresponsive surface. Using this PnPrOx surface a variety of cell types including endothelial cells, mesenchymal stem cells, and fibroblasts, were seeded and cultured until confluency. By decreasing the temperature to 16 °C, viable cell sheets were detached within cell-type dependent time frames and could be harvested for biological analysis. We show that the cytoskeleton rearranges, leading to a more contracted morphology of the cells in the detached cell sheet. The cellular junctions between single cells within the sheet could be detected using immunostainings, indicating that strong and intact intracellular contacts are preserved in the harvested sheets.

5.
Int J Nanomedicine ; 13: 8443-8460, 2018.
Article in English | MEDLINE | ID: mdl-30587970

ABSTRACT

INTRODUCTION: Magnetic drug targeting utilizes superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate drugs in specified vasculature regions. METHODS: We produced SPIONs conjugated with dexamethasone phosphate (SPION-DEXA). The efficacy of magnetic drug targeting was investigated in a rabbit model of atherosclerosis induced by balloon injury and high cholesterol diet. RESULTS: In vitro, SPION-DEXA were well-tolerated by endothelial cells. SPION-DEXA were internalized by human peripheral blood mononuclear cells and induced CD163 expression comparable with the free drug. In vivo, magnetic targeting of SPIONs to abdominal aorta was confirmed by histology. Upon vascular injury followed by high-cholesterol diet, early administration of SPION-DEXA enhanced the inflammatory burden in the plaques. Increased macrophage content and larger intima- media thickness were observed in animals treated with SPION-DEXA compared with controls. In advanced atherosclerosis, no beneficial effect of local glucocorticoid therapy was detectable. CONCLUSION: Magnetic drug targeting represents an efficient platform to deliver drugs to diseased arteries in vivo. However, targeting of vascular injury in the lipid-rich environment using dexamethasone-conjugated SPIONs may cause accelerated inflammatory response.


Subject(s)
Drug Delivery Systems , Magnetite Nanoparticles/chemistry , Plaque, Atherosclerotic/drug therapy , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Dexamethasone/pharmacology , Drug Liberation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles/administration & dosage , Monocytes/drug effects , Monocytes/metabolism , Plaque, Atherosclerotic/pathology , Rabbits , Receptors, Cell Surface/metabolism
6.
Nanotoxicology ; 12(9): 957-974, 2018 11.
Article in English | MEDLINE | ID: mdl-30265172

ABSTRACT

The objective of our work was to investigate the effects of different types of nanoparticles on endothelial (HUVEC) and monocytic cell functions. We prepared and tested 14 different nanosystems comprising liposomes, lipid nanoparticles, polymer, and iron oxide nanoparticles. Some of the tested nanosystems contained targeting, therapeutic, or contrast agent(s). The effect of particles (0-400 µg/mL) on endothelial-monocytic cell interactions in response to TNF-α was investigated using an arterial bifurcation model and dynamic monocyte adhesion assay. Spontaneous HUVEC migration (0-100 µg/mL nanoparticles) and chemotaxis of monocytic cells towards MCP-1 in presence of particles (0-400 µg/mL) were determined using a barrier assay and a modified Boyden chamber assay, respectively. Lipid nanoparticles dose-dependently reduced monocytic cell chemotaxis and adhesion to activated HUVECs. Liposomal nanoparticles had little effect on cell migration, but one formulation induced monocytic cell recruitment by HUVECs under non-uniform shear stress by about 50%. Fucoidan-coated polymer nanoparticles (25-50 µg/mL) inhibited HUVEC migration and monocytic cell chemotaxis, and had a suppressive effect on monocytic cell recruitment under non-uniform shear stress. No significant effects of iron oxide nanoparticles on monocytic cell recruitment were observed except lauric acid and human albumin-coated particles which increased endothelial-monocytic interactions by 60-70%. Some of the iron oxide nanoparticles inhibited HUVEC migration and monocytic cell chemotaxis. These nanoparticle-induced effects are of importance for vascular cell biology and function and must be considered before the potential clinical use of some of the analyzed nanosystems in cardiovascular applications.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Monocytes/drug effects , Nanoparticles/chemistry , Nanoparticles/toxicity , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Culture Techniques , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Chemotaxis/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Humans , Monocytes/cytology , Surface Properties , THP-1 Cells
7.
Int J Nanomedicine ; 13: 1899-1915, 2018.
Article in English | MEDLINE | ID: mdl-29636608

ABSTRACT

BACKGROUND: Rising criticism of currently available contrast agents for magnetic resonance imaging, either due to their side effects or limited possibilities in terms of functional imaging, evoked the need for safer and more versatile agents. We previously demonstrated the suitability of novel dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) for biomedical applications in terms of safety and biocompatibility. METHODS: In the present study, we investigated the size-dependent cross-linking process of these particles as well as the size dependency of their imaging properties. For the latter purpose, we adopted a simple and easy-to-perform experiment to estimate the relaxivity of the particles. Furthermore, we performed an extensive analysis of the particles' storage stability under different temperature conditions, showing their superb stability and the lack of any signs of agglomeration or sedimentation during a 12 week period. RESULTS: Independent of their size, SPIONDex displayed no irritation potential in a chick chorioallantoic membrane assay. Cell uptake studies of ultra-small (30 nm) SPIONDex confirmed their internalization by macrophages, but not by non-phagocytic cells. Additionally, complement activation-related pseudoallergy (CARPA) experiments in pigs treated with ultra-small SPIONDex indicated the absence of hypersensitivity reactions. CONCLUSION: These results emphasize the exceptional safety of SPIONDex, setting them apart from the existing SPION-based contrast agents and making them a very promising candidate for further clinical development.


Subject(s)
Contrast Media/adverse effects , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Animals , Chick Embryo , Chorioallantoic Membrane/drug effects , Complement Activation/drug effects , Contrast Media/pharmacokinetics , Dextrans/chemistry , Drug Storage , Ferric Compounds/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Macrophages/drug effects , Particle Size , Swine , Temperature
8.
Int J Nanomedicine ; 12: 5223-5238, 2017.
Article in English | MEDLINE | ID: mdl-28769560

ABSTRACT

Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size <30 nm was achieved, without affecting their hemo- and biocompatibility. Our findings suggest that due to their excellent biocompatibility, safety upon intravenous administration and size-tunability, SPIONdex particles may represent a suitable candidate for a new-generation MRI contrast agent.


Subject(s)
Complement Activation/drug effects , Contrast Media/administration & dosage , Contrast Media/chemistry , Magnetite Nanoparticles/chemistry , Administration, Intravenous , Animals , Biocompatible Materials/chemistry , Cell Survival/drug effects , Contrast Media/adverse effects , Dextrans/chemistry , Drug Hypersensitivity/etiology , Ferric Compounds/chemistry , Humans , Liver/drug effects , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/adverse effects , Mice , Monocytes/drug effects , Particle Size , Rabbits , Swine
9.
Sci Rep ; 7: 42314, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176885

ABSTRACT

Magnetic targeting utilises the properties of superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate particles in specified vasculature regions under an external magnetic field. As the behaviour of circulating particles varies depending on nanoparticle characteristics, magnetic field strength and flow dynamics, we established an improved ex vivo model in order to estimate the magnetic capture of SPIONs in physiological-like settings. We describe here a new, easy to handle ex vivo model of human umbilical artery. Using this model, the magnetic targeting of different types of SPIONs under various external magnetic field gradients and flow conditions was investigated by atomic emission spectroscopy and histology. Among tested particles, SPION-1 with lauric acid shell had the largest capacity to accumulate at the specific artery segment. SPION-2 (lauric acid/albumin-coated) were also successfully targeted, although the observed peak in the iron content under the tip of the magnet was smaller than for SPION-1. In contrast, we did not achieve magnetic accumulation of dextran-coated SPION-3. Taken together, the umbilical artery model constitutes a time- and cost-efficient, 3R-compliant tool to assess magnetic targeting of SPIONs under flow. Our results further imply the possibility of an efficient in vivo targeting of certain types of SPIONs to superficial arteries.


Subject(s)
Magnetite Nanoparticles/chemistry , Models, Biological , Rheology , Umbilical Arteries/physiology , Humans , Time Factors
10.
Nanomedicine (Lond) ; 11(6): 597-616, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27003004

ABSTRACT

AIM: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. METHODS: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. RESULTS & CONCLUSIONS: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 µg/ml in static, and up to 400 µg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/toxicity , Animals , Cell Survival/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Human Umbilical Vein Endothelial Cells , Humans , Liposomes/chemistry , Liposomes/toxicity , Male , Polymers/chemistry , Polymers/toxicity , Swine
11.
Nanomedicine (Lond) ; 10(21): 3287-304, 2015.
Article in English | MEDLINE | ID: mdl-26472623

ABSTRACT

Nanomedicine offers tremendous opportunities for the development of novel therapeutic and diagnostic tools. During the last decades, extensive knowledge was gained about stabilizing and the coating of nanoparticles, their functionalization for drug binding and drug release and possible strategies for therapies and diagnostics of different diseases. Most recently, more and more emphasis has been placed on nanotoxicology and nanosafety aspects. The section of experimental oncology and nanomedicine developed a concept for translating this knowledge into clinical application of magnetic drug targeting for the treatment of cancer and other diseases using superparamagnetic iron oxide nanoparticles. This approach includes reproducible synthesis, detailed characterization, nanotoxicological testing, evaluation in ex vivo models, preclinical animal studies and production of superparamagnetic iron oxide nanoparticles according to good manufacturing practice regulations.


Subject(s)
Magnetics , Nanoparticles/therapeutic use , Neoplasms/therapy , Humans
12.
Clin Hemorheol Microcirc ; 61(2): 259-77, 2015.
Article in English | MEDLINE | ID: mdl-26410877

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) are versatile and easily functionalized agents with high potential for diagnostic and therapeutic intravascular applications. In this study, we analyzed the responses of endothelial (ECs) and monocytic cells to three different types of SPIONs, in order to assess the influence of physico-chemical properties on the biological reactions to SPIONs. The following formulations were used: (1) Lauric acid-coated and BSA-stabilized SPION-1,(2) Lauric acid/BSA-coated SPION-2 and (3) dextran-coated SPION-3. SPION-1 were strongly internalized by ECs and reduced their viability in static conditions. Additionally, they had a dose-dependent inhibitory effect on monocytic cell chemotaxis to MCP-1, but did not affect monocytic cell recruitment by ECs. SPION-2 uptake was less pronounced, both in ECs and monocytic cells, and these particles were better tolerated by the vascular cells. Not being internalized by endothelial or monocytic cells, SPION-3 did not induce relevant effects on cell viability, motility or endothelial-monocytic cell interactions.Taken together, localized accumulation of circulating SPION under physiologic-like flow conditions and their cellular uptake depends on the physicochemical characteristics. Our findings suggest that SPION-2 are suitable for magnetic targeting of atherosclerotic plaques. Due to their excellent biocompatibility and low internalization, SPION-3 may represent a suitable imaging agent for intravascular applications.


Subject(s)
Ferrosoferric Oxide , Human Umbilical Vein Endothelial Cells/cytology , Metal Nanoparticles , Monocytes/cytology , Cell Survival , Cells, Cultured , Ferric Compounds , Humans , Magnetics
13.
Cell Microbiol ; 17(12): 1833-47, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26104016

ABSTRACT

In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ.


Subject(s)
Host-Pathogen Interactions , Intestinal Mucosa/chemistry , Macrophages/immunology , Macrophages/microbiology , Oxygen/analysis , Salmonella/immunology , Salmonella/physiology , Anaerobiosis , Animals , Disease Models, Animal , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Salmonella/growth & development , Salmonella/metabolism , Salmonella Infections/microbiology , Salmonella Infections/pathology , Virulence
14.
Int J Nanomedicine ; 9: 4847-66, 2014.
Article in English | MEDLINE | ID: mdl-25364244

ABSTRACT

The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 µg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment.


Subject(s)
Lauric Acids/chemistry , Magnetite Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cattle , Cell Survival/drug effects , Colloids/chemistry , Drug Delivery Systems , Drug Stability , Edetic Acid , Human Umbilical Vein Endothelial Cells , Humans , Jurkat Cells , Magnetite Nanoparticles/toxicity , Mitoxantrone/chemistry , Mitoxantrone/pharmacokinetics , Spectroscopy, Fourier Transform Infrared
15.
Infect Immun ; 80(4): 1455-66, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22252868

ABSTRACT

In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (Mφ) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient Mφ revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected Mφ. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli- or S. aureus-infected wild-type Mφ, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX(-/-) NOS2(-/-) Mφ further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX(-/-) NOS2(-/-) Mφ cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.


Subject(s)
Cell Hypoxia , Escherichia coli/immunology , Macrophages/immunology , Macrophages/metabolism , Mitochondria/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/immunology , Animals , Electron Transport , Escherichia coli/growth & development , Macrophages/microbiology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/deficiency , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA Interference , RNA, Small Interfering , Reactive Nitrogen Species/biosynthesis , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...