Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
APMIS ; 132(6): 382-415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469726

ABSTRACT

Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Dysbiosis , Gastrointestinal Microbiome , Humans , Arthritis, Rheumatoid/microbiology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Biomarkers/metabolism , Dysbiosis/microbiology , Animals , Fatty Acids, Volatile/metabolism
2.
Methods Mol Biol ; 2609: 315-328, 2023.
Article in English | MEDLINE | ID: mdl-36515843

ABSTRACT

The rate of RNA polymerase II (RNAPII) transcriptional elongation plays a critical role in mRNA biogenesis, from transcription initiation to alternative splicing. As RNAPII moves along the DNA, it must read the DNA sequences wrapped up as chromatin. Thus, the structure of chromatin impedes the movement and speed at which RNAPII moves, presenting a crucial regulation to gene expression. Therefore, factors that bind and regulate the structure of chromatin will impact the rate of RNAPII elongation. We previously showed that PARP1 (poly-ADP-ribose polymerase 1) is one of such factors that bind and alter chromatin dynamics. We also showed that its alteration of chromatin structure modulates RNAPII processivity during transcriptional elongation. Here, we aim to understand how PARP1 alters RNAPII elongation kinetics genome wide.


Subject(s)
RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , Alternative Splicing , Chromatin , DNA/metabolism , Transcriptional Elongation Factors/metabolism
3.
Cells ; 11(20)2022 10 12.
Article in English | MEDLINE | ID: mdl-36291070

ABSTRACT

RNA polymerase elongation along the gene body is tightly regulated to ensure proper transcription and alternative splicing events. Understanding the mechanism and factors critical in regulating the rate of RNA polymerase II elongation and processivity is clearly important. Recently we showed that PARP1, a well-known DNA repair protein, when bound to chromatin, regulates RNA polymerase II elongation. However, the mechanism by which it does so is not known. In the current study, we aimed to tease out how PARP1 regulates RNAPII elongation. We show, both in vivo and in vitro, that PARP1 binds directly to the Integrator subunit 3 (IntS3), a member of the elongation Integrator complex. The association between the two proteins is mediated via the C-terminal domain of PARP1 to the C-terminal domain of IntS3. Interestingly, the occupancy of IntS3 along two PARP1 target genes mimicked that of PARP1, suggesting a role in its recruitment/assembly of elongation factors. Indeed, the knockdown of PARP1 resulted in differential chromatin association and gene occupancy of IntS3 and other key elongation factors. Most of these PARP1-mediated effects were due to the physical presence of PARP1 rather than its PARylation activity. These studies argue that PARP1 controls the progressive RNAPII elongation complexes. In summary, we present a platform to begin to decipher PARP1's role in recruiting/scaffolding elongation factors along the gene body regions during RNA polymerase II elongation and gene regulation.


Subject(s)
RNA Polymerase II , Transcription, Genetic , Alternative Splicing , Chromatin , RNA Polymerase II/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism
4.
Biochemistry ; 61(7): 575-582, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35285625

ABSTRACT

Human phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimdiazole succinocarboxamide synthetase (PAICS) is a dual activity enzyme catalyzing two consecutive reactions in de novo purine nucleotide synthesis. Crystallographic structures of recombinant human PAICS suggested the channeling of 4-carboxy-5-aminoimidazole-1-ribose-5'-phosphate (CAIR) between two active sites of PAICS, while a prior work of an avian PAICS suggested otherwise. Here, we present time-course mass spectrometric data supporting the channeling of CAIR between domains of recombinant human PAICS. Time-course mass spectral analysis showed that CAIR added to the bulk solution (CAIRbulk) is decarboxylated and re-carboxylated before the accumulation of succinyl-5-aminoimidazole-4-carboxamide-1-ribose-5'-phosphate (SAICAR). An experiment with 13C-bicarbonate showed that SAICAR production was proportional to re-carboxylated CAIR instead of total CAIR or CAIRbulk. This result indicates that the SAICAR synthase domain selectively uses enzyme-made CAIR over CAIRbulk, which is consistent with the channeling model. This channeling between PAICS domains may be a part of a larger channeling process in de novo purine nucleotide synthesis.


Subject(s)
Bicarbonates , Carboxy-Lyases , Peptide Synthases , Carboxy-Lyases/chemistry , Catalytic Domain , Humans , Multifunctional Enzymes/chemistry , Peptide Synthases/chemistry
5.
Sci Rep ; 9(1): 3722, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842529

ABSTRACT

PARP1 is an abundant nuclear protein with many pleiotropic functions involved in epigenetic and transcriptional controls. Abundance of mRNA depends on the balance between synthesis and decay of a particular transcript. PARP1 binds RNA and its depletion results in increased expression of genes involved in nonsense-mediated decay, suggesting that PARP1 might be involved in mRNA stability. This is of interest considering RNA binding proteins play key roles in post-transcriptional processes in all eukaryotes. We tested the direct impact of PARP1 and PARylation on mRNA stability and decay. By measuring the half-lives of two PARP1-mRNA targets we found that the half-lives were significantly decreased in PARP1-depleted cells. PARP1 depletion impacted both the synthesis of nascent mRNA and the stability of mature mRNAs. PARylation impacted the production of nascent mRNA and the stability of mature mRNA, albeit to a lesser extent than PARP1 KD. PARylation enhanced the impact of PARP1 depletion. These studies provide the first direct comparative role of PARP1 and PARylation in RNA stability and decay, adding a new dimension as to how PARP1 regulates gene expression. These studies present a platform to begin to tease out the influence of PARP1 at each step of RNA biogenesis and decay to fine-tune gene expression.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Animals , Cell Line , Drosophila melanogaster/genetics , Epigenesis, Genetic , Gene Expression Regulation , Gene Knockdown Techniques , Half-Life , RNA Stability
6.
Epigenetics Chromatin ; 12(1): 15, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30777121

ABSTRACT

BACKGROUND: Recently, we showed that PARP1 is involved in cotranscriptional splicing, possibly by bridging chromatin to RNA and recruiting splicing factors. It also can influence alternative splicing decisions through the regulation of RNAPII elongation. In this study, we investigated the effect of PARP1-mediated chromatin changes on RNAPII movement, during transcription and alternative splicing. RESULTS: We show that RNAPII pauses at PARP1-chromatin structures within the gene body. Knockdown of PARP1 abolishes this RNAPII pausing, suggesting that PARP1 may regulate RNAPII elongation. Additionally, PARP1 alters nucleosome deposition and histone post-translational modifications at specific exon-intron boundaries, thereby affecting RNAPII movement. Lastly, genome-wide analyses confirmed that PARP1 influences changes in RNAPII elongation by either reducing or increasing the rate of RNAPII elongation depending on the chromatin context. CONCLUSIONS: These studies suggest a context-specific effect of PARP1-chromatin binding on RNA polymerase movement and provide a platform to delineate PARP1's role in RNA biogenesis and processing.


Subject(s)
Chromatin Assembly and Disassembly , RNA Splicing , Transcription Elongation, Genetic , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA Polymerase II/metabolism
7.
Brain Behav ; 7(9): e00795, 2017 09.
Article in English | MEDLINE | ID: mdl-28948088

ABSTRACT

INTRODUCTION: In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS: Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS: Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS: Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.


Subject(s)
Dentate Gyrus/metabolism , Glutamic Acid , Hippocampus , Kindling, Neurologic/metabolism , Nerve Tissue Proteins/metabolism , R-SNARE Proteins/metabolism , Animals , Electric Stimulation/methods , Glutamic Acid/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice , Models, Animal , Synaptic Transmission
9.
Methods Mol Biol ; 1608: 211-228, 2017.
Article in English | MEDLINE | ID: mdl-28695513

ABSTRACT

There is a long list of important RNA-binding proteins (RBP) involved in different steps of gene expression through posttranscriptional modifications: pre-mRNA splicing, mRNA stabilization, polyadenylation, mRNA export from nucleus to the cytoplasm, and translation. The critical role of RNA-protein interaction necessitates a continuous identification of proteins involved in this process. Here we describe the identification of Poly-ADP-Ribose Polymerase 1 (PARP1) as an RNA binding protein involved in RNA splicing.


Subject(s)
Poly (ADP-Ribose) Polymerase-1/metabolism , RNA, Messenger/metabolism , Adenosine Diphosphate Ribose/metabolism , Animals , Chromatin/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , RNA Splicing/genetics , RNA Splicing/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
Cell Discov ; 2: 15046, 2016.
Article in English | MEDLINE | ID: mdl-27462443

ABSTRACT

Specialized chromatin structures such as nucleosomes with specific histone modifications decorate exons in eukaryotic genomes, suggesting a functional connection between chromatin organization and the regulation of pre-mRNA splicing. Through profiling the functional location of Poly (ADP) ribose polymerase, we observed that it is associated with the nucleosomes at exon/intron boundaries of specific genes, suggestive of a role for this enzyme in alternative splicing. Poly (ADP) ribose polymerase has previously been implicated in the PARylation of splicing factors as well as regulation of the histone modification H3K4me3, a mark critical for co-transcriptional splicing. In light of these studies, we hypothesized that interaction of the chromatin-modifying factor, Poly (ADP) ribose polymerase with nucleosomal structures at exon-intron boundaries, might regulate pre-mRNA splicing. Using genome-wide approaches validated by gene-specific assays, we show that depletion of PARP1 or inhibition of its PARylation activity results in changes in alternative splicing of a specific subset of genes. Furthermore, we observed that PARP1 bound to RNA, splicing factors and chromatin, suggesting that Poly (ADP) ribose polymerase serves as a gene regulatory hub to facilitate co-transcriptional splicing. These studies add another function to the multi-functional protein, Poly (ADP) ribose polymerase, and provide a platform for further investigation of this protein's function in organizing chromatin during gene regulatory processes.

11.
Biol Open ; 4(10): 1290-7, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26369929

ABSTRACT

In this study we show that binding of mitochondria to vimentin intermediate filaments (VIF) is regulated by GTPase Rac1. The activation of Rac1 leads to a redoubling of mitochondrial motility in murine fibroblasts. Using double-mutants Rac1(G12V, F37L) and Rac1(G12V, Y40H) that are capable to activate different effectors of Rac1, we show that mitochondrial movements are regulated through PAK1 kinase. The involvement of PAK1 kinase is also confirmed by the fact that expression of its auto inhibitory domain (PID) blocks the effect of activated Rac1 on mitochondrial motility. The observed effect of Rac1 and PAK1 kinase on mitochondria depends on phosphorylation of the Ser-55 of vimentin. Besides the effect on motility Rac1 activation also decreases the mitochondrial membrane potential (MMP) which is detected by ∼20% drop of the fluorescence intensity of mitochondria stained with the potential sensitive dye TMRM. One of important consequences of the discovered regulation of MMP by Rac1 and PAK1 is a spatial differentiation of mitochondria in polarized fibroblasts: at the front of the cell they are less energized (by ∼25%) than at the rear part.

12.
Cancer Genet ; 208(4): 148-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25892123

ABSTRACT

The KMT2A gene (previously known as MLL) located at 11q23 is often involved in recurrent chromosomal translocations that lead to the development of acute leukemia, particularly in infants. Acute leukemias with KMT2A rearrangements have different prognoses, which depend on the partner gene involved in the translocation. The detection of all possible types of KMT2A gene rearrangements is of key importance for the identification of biological subgroups, which may differ in clinical outcome. In this report, we describe a case study of a 7-month-old boy who presented with AML-M4; however, no obvious 11q23 rearrangement was detected in the analyzed karyotype. Fluorescence in situ hybridization evaluation showed a nonstandard signal distribution in blast cells, corresponding to the presence of two KMT2A copies and one additional copy of 5'-KMT2A inserted into the long arm of the X chromosome (ins(X;11)(q28;q23q23)). Subsequent molecular analysis showed a novel variant form of the previously described KMT2A-FLNA fusion gene, in which the KMT2A intron 9 is fused to the FLNA exon 16.


Subject(s)
Chromosomes, Human, X , Filamins/genetics , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Chromosomes, Human, Pair 11/genetics , Genetic Variation , Humans , Infant , Karyotyping , Male , Mutagenesis, Insertional , Recombinant Fusion Proteins/genetics
13.
FASEB J ; 29(3): 820-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25404709

ABSTRACT

This study demonstrates that the association of mitochondria with vimentin intermediate filaments (VIFs) measurably increases their membrane potential. This increase is detected by quantitatively comparing the fluorescence intensity of mitochondria stained with the membrane potential-sensitive dye tetramethylrhodamine-ethyl ester (TMRE) in murine vimentin-null fibroblasts with that in the same cells expressing human vimentin (∼35% rise). When vimentin expression is silenced by small hairpin RNA (shRNA) to reduce vimentin by 90%, the fluorescence intensity of mitochondria decreases by 20%. The increase in membrane potential is caused by specific interactions between a subdomain of the non-α-helical N terminus (residues 40 to 93) of vimentin and mitochondria. In rho 0 cells lacking mitochondrial DNA (mtDNA) and consequently missing several key proteins in the mitochondrial respiratory chain (ρ(0) cells), the membrane potential generated by an alternative anaerobic process is insensitive to the interactions between mitochondria and VIF. The results of our studies show that the close association between mitochondria and VIF is important both for determining their position in cells and their physiologic activity.


Subject(s)
Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Intermediate Filaments/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Vimentin/metabolism , Animals , Blotting, Western , Cell Proliferation , Cells, Cultured , DNA, Mitochondrial/genetics , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fluorescent Antibody Technique , Humans , Rats
14.
J Org Chem ; 78(23): 11691-7, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24090351

ABSTRACT

The preparation and chemistry of novel sulfonyl- and phosphoryl-derived λ(3)-iodanes are reported. These compounds with three different heteroatoms attached to a negatively charged C atom represent potentially useful reagents that combine in one molecule the synthetic advantages of a phosphonium ylide and an iodonium salt. Specifically, they can react with a number of acetylenes, leading to hitherto unknown sulfonyl- and phosphoryl-substituted phosphinolines, phosphininothiophenes, and a novel type of annelated P-containing heterocycle--phosphininopyrazole.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Iodinated/chemistry , Organophosphonates/chemistry , Heterocyclic Compounds/chemistry , Molecular Structure
15.
J Org Chem ; 77(13): 5770-4, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22734883

ABSTRACT

A series of hitherto unknown hetaryl-substituted (in phosphonium part) phosphonium-iodonium ylides were synthesized. The reaction of these mixed phosphonium-iodonium ylides with acetylenes opens a way to new furyl annelated phosphinolines or unusually substituted phosphininofurans.


Subject(s)
Furans/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Iodinated/chemical synthesis , Organophosphorus Compounds/chemical synthesis , Furans/chemistry , Heterocyclic Compounds/chemistry , Hydrocarbons, Iodinated/chemistry , Molecular Structure , Organophosphorus Compounds/chemistry
16.
Epilepsia ; 53(1): 157-67, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22150629

ABSTRACT

PURPOSE: To correlate kindling-associated alterations of the neurotransmitter secretory machinery, glutamate release in the trisynaptic hippocampal excitatory pathway, and the behavioral evolution of kindling-induced epileptogenesis. METHOD: Neurotransmitter release requires the fusion of vesicle and plasma membranes; it is initiated by formation of a stable, ternary complex (7SC) of SNARE [soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor] proteins. Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators [NSF, SV2 (synaptic vesicle protein 2)] in hippocampal synaptosomes from amygdala-kindled animals. Hippocampal synaptic glutamate release was measured in vivo with a unique microelectrode array (MEA) that uses glutamate oxidase to catalyze the breakdown of glutamate into a reporter molecule. KEY FINDINGS: Ipsilateral hippocampal accumulation of 7SC developed with onset of amygdalar kindling, but became permanent only in animals stimulated to at least Racine stage 3; the ratio peaked and did not increase with more than two consecutive stage 5 seizures. Chronic 7SC asymmetry was seen in entorhinal cortex and the hippocampal formation, particularly in dentate gyrus (DG) and CA1, but not in the other brain areas examined. There was a strong correlation between asymmetric 7SC accumulation and increased total hippocampal SV2. Following a 30-day latent period, amplitudes of spontaneous synaptic glutamate release were enhanced in ipsilateral DG and reduced in ipsilateral CA3 of kindled animals; increased volleys of synaptic glutamate activity were seen in ipsilateral CA1. SIGNIFICANCE: Amygdalar kindling is associated with chronic changes in the flow of glutamate signaling in the excitatory trisynaptic pathway and with early but permanent changes in the mechanics of vesicular release in ipsilateral hippocampal formation.


Subject(s)
Glutamic Acid/metabolism , Hippocampus/metabolism , Kindling, Neurologic/metabolism , SNARE Proteins/metabolism , Seizures/metabolism , Amygdala/physiopathology , Animals , Disease Models, Animal , Electric Stimulation/methods , Electrodes, Implanted , Electroencephalography , Male , Rats , Rats, Sprague-Dawley , Seizures/physiopathology , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Synaptosomes/metabolism
17.
J Org Chem ; 76(2): 566-72, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21175214

ABSTRACT

We describe three different series of experiments which were undertaken to test our hypothesis that during irradiation of phosphonium-iodonium ylides (1a, 1b) an electrophilic carbene is generated. By opposing the assumed intermediate to monosubstituted alkynes, we observed in the case of electron-rich substituents at the triple bond a domination of a 1,3-dipolar cycloaddition of the intermediate with the triple bond to yield furans. In the case of electron poorer substituents, the formation of phosphinolines prevails. A second series of experiments was carried out with mixed ylides in which one phenyl ring at the triarylphosphonium group was replaced by a thienyl group. In this case, we observe only an intramolecular reaction with the thienyl ring to yield the phosphinolines 21-23. In a third test, we replaced in the mixed ylides 1a, 1b the COR group by a CN substituent. This modification leads to phosphinolines only and avoids a 1,3-dipolar cycloaddition.

18.
J Biol Chem ; 285(1): 761-72, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19887446

ABSTRACT

N-Ethylmaleimide-sensitive factor (NSF) is a homo-hexameric member of the AAA(+) (ATPases associated with various cellular activities plus) family. It plays an essential role in most intracellular membrane trafficking through its binding to and disassembly of soluble NSF attachment protein (SNAP) receptor (SNARE) complexes. Each NSF protomer contains an N-terminal domain (NSF-N) and two AAA domains, a catalytic NSF-D1 and a structural NSF-D2. This study presents detailed mutagenesis analyses of NSF-N and NSF-D1, dissecting their roles in ATP hydrolysis, SNAP.SNARE binding, and complex disassembly. Our results show that a positively charged surface on NSF-N, bounded by Arg(67) and Lys(105), and the conserved residues in the central pore of NSF-D1 (Tyr(296) and Gly(298)) are involved in SNAP.SNARE binding but not basal ATP hydrolysis. Mutagenesis of Sensor 1 (Thr(373)-Arg(375)), Sensor 2 (Glu(440)-Glu(442)), and Arginine Fingers (Arg(385) and Arg(388)) in NSF-D1 shows that each region plays a discrete role. Sensor 1 is important for basal ATPase activity and nucleotide binding. Sensor 2 plays a role in ATP- and SNAP-dependent SNARE complex binding and disassembly but does so in cis and not through inter-protomer interactions. Arginine Fingers are important for SNAP.SNARE complex-stimulated ATPase activity and complex disassembly. Mutants at these residues have a dominant-negative phenotype in cells, suggesting that Arginine Fingers function in trans via inter-protomer interactions. Taken together, these data establish functional roles for many of the structural elements of the N domain and of the D1 ATP-binding site of NSF.


Subject(s)
N-Ethylmaleimide-Sensitive Proteins/chemistry , N-Ethylmaleimide-Sensitive Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Amino Acids/genetics , Amino Acids/metabolism , Binding Sites , HeLa Cells , Humans , Hydrolysis , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phenotype , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism
19.
J Org Chem ; 74(24): 9428-32, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-19919090

ABSTRACT

A photochemical reaction of mixed phosphonium-iodonium ylides with acetylenes yielding lambda(5)-phosphinolines, a rare class of phosphorus heterocycles hardly accessible by other methods, was found. The yields of lambda(5)-phosphinolines vary from 35% to 80%. The structures of two phosphinolines were established by single-crystal X-ray diffraction. The X-ray diffraction and NMR spectra data indicate the superposition of ylidic and aromatic structures for phosphinolines.

20.
Curr Biol ; 18(21): 1680-6, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18976913

ABSTRACT

Unlike animals that produce gametes upon differentiation of meiotic products, plants develop haploid male and female gametophytes that differentiate gametes such as sperm, egg and central cells, and accessory cells [1, 2]. Both gametophytes participate in double fertilization and give rise to the next sporophytic generation. Little is known about the function of cell-cycle genes in differentiation and development of gametophytes and in reproduction [1, 2]. RETINOBLASTOMA RELATED (RBR) is a plant homolog of the tumor suppressor Retinoblastoma (pRb), which is primarily known as negative regulator of the cell cycle [3]. We show that RBR is required for cell differentiation of male and female gametophytes in Arabidopsis and that loss of RBR perturbs expression levels of the evolutionarily ancient Polycomb Repressive Complex 2 (PRC2) subunits and their modifiers encoding PRC2 subunits or DNA METHYLTRANSFERASE 1 (MET1) [4-6], exemplifying convergent evolution involving the RBR-PRC2-MET1 regulatory pathways. In addition, RBR binds MET1, and maintenance of heterochromatin in central cells, a mechanism that is likely mediated by MET1[7, 8], is impaired in the absence of RBR. Surprisingly, PRC2-specific H3K27-trimethylation activity represses paternal RBR allele, suggesting a functional role for a dynamic and reciprocal RBR-PRC2 regulatory circuit in cellular differentiation and reproductive development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Repressor Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Differentiation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Heterochromatin/metabolism , Polycomb-Group Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...