Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668193

ABSTRACT

Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP, NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity. The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst loss and allows for repeated use.

2.
Molecules ; 28(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138614

ABSTRACT

Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630859

ABSTRACT

Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we discuss major approaches to the preparation of NPs in zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus on the modification of zeolites to provide structural integrity and controlled acidity, which can be accomplished by the incorporation of certain metal ions or elements. The other modification avenue is the adjustment of zeolite morphology, including the creation of numerous defects for the NP entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also provide examples of synergy between metal and acid sites and emphasize that without density functional theory calculations, many assumptions about the interactions between active sites remain unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste) processing for the last five years.

4.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364572

ABSTRACT

Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.

5.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578573

ABSTRACT

In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.

6.
Carbohydr Polym ; 269: 118267, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294299

ABSTRACT

Here, we report a one-pot solvothermal method for the development of magnetically recoverable catalysts with Ru or Ag nanoparticles (NPs) capped by chitosan (CS), a derivative of natural chitin. The formation of iron oxide NPs was carried out in situ in the presence of CS and iron acetylacetonate in boiling triethyleneglycol (TEG) due to CS solubilization in warm TEG. Coordination with Ru or Ag species and the NP formation take place in the same reaction solution, eliminating intermediate steps. In optimal conditions the method developed allows stabilization of 2.2 nm monodisperse Ru NPs (containing both Ru0 and Ru4+ species) that are evenly distributed through the catalyst, while for Ag NPs, this stabilizing medium is inferior, leading to exceptionally large Ag nanocrystals. Catalytic testing of CS-Ru magnetically recoverable catalysts in the reduction of 4-nitrophenol to 4-aminophenol with excess NaBH4 revealed that the catalyst with 2.2 nm Ru NPs exhibits the highest catalytic activity compared to samples with larger Ru NPs (2.9-3.2 nm). Moreover, this catalyst displayed extraordinary shelf-life in the aqueous solution (up to ten months) and excellent reusability in ten consecutive reactions with easy magnetic separation at each step which were assigned to its conformational rigidity at a constant pH. These characteristics as well as favorable environmental factors of the catalyst fabrication, make it promising for nitroarene reduction.

7.
Chempluschem ; 85(8): 1697-1703, 2020 08.
Article in English | MEDLINE | ID: mdl-32662952

ABSTRACT

Here, the development of a new catalyst is reported for the selective furfural (FF) hydrogenation to furfuryl alcohol (FA) based on about 7 nm sized Pd-Cu alloy nanoparticles (NPs) formed in inexpensive, commercially available micro/mesoporous hypercrosslinked polystyrene (HPS). A comparison of the catalytic properties of as-synthesized and reduced (denoted "r") catalysts as well as Pd-Cu alloy and monometallic palladium NPs showed a considerable enhancement of the catalytic performance of Pd-Cu/HPS-r compared to other catalysts studied, resulting in about 100 % FF conversion, 95.2 % selectivity for FA and a TOF of 1209 h-1 . This was attributed to the enrichment of the NP surface with copper atoms, disrupting the furan ring adsorption, and to the presence of both zerovalent and cationic palladium and copper species, resulting in optimal hydrogen and FF adsorption. These factors along with exceptional stability of the catalyst in ten consecutive catalytic cycles make it highly promising in practical applications.

8.
ACS Omega ; 5(21): 12329-12338, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548416

ABSTRACT

Here, we report the structures and properties of biocatalysts based on glucose oxidase (GOx) macromolecules immobilized on the mesoporous zirconia surface with or without magnetic iron oxide nanoparticles (IONPs) in zirconia pores. Properties of these biocatalysts were studied in oxidation of d-glucose to d-gluconic acid at a wide range of pH and temperatures. We demonstrate that the calcination temperature (300, 400, or 600 °C) of zirconia determines its structure, with crystalline materials obtained at 400 and 600 °C. This, in turn, influences the catalytic behavior of immobilized GOx, which was tentatively assigned to the preservation of GOx conformation on the crystalline support surface. IONPs significantly enhance the biocatalyst activity due to synergy with the enzyme. At the same time, neither support porosity nor acidity/basicity shows correlations with the properties of this biocatalyst. The highest relative activity of 98% (of native GOx) at a pH 6-7 and temperature of 40-45 °C was achieved for the biocatalyst based on ZrO2 calcined at 600 °C and containing IONPs. This process is green as it is characterized by a high atom economy due to the formation of a single product with high selectivity and conversion and minimization of waste due to magnetic separation of the catalyst from an aqueous solution. These and an exceptional stability of this catalyst in 10 consecutive reactions (7% relative activity loss) make it favorable for practical applications.

9.
Chem Rev ; 120(2): 1350-1396, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31181907

ABSTRACT

Nanoparticle (NP)/polymer nanocomposites received considerable attention because of their important applications including catalysis. Metal and metal oxide NPs may impart catalytic properties to polymer nanocomposites, while polymers with a different structure, functionality, and architecture control the NP formation (size, shape, location, composition, etc.) and in this way, govern catalytic properties of nanocomposites. In this review we will discuss the influence of the polymer nanostructure (thin or grafted layers, polymer ordering, polymer nanopores), architecture (branched vs linear), functional groups (coordinating or ionic), specific properties (reducing, stimuli responsive, conductive), etc. on the formation of metal or metal oxide NPs and the catalytic behavior of the nanocomposites. The development of novel and efficient catalysts is crucial for progress in chemical sciences, and this explains a huge number of publications in this area in recent years. Taking into consideration previous review articles on NP/polymer catalysts, we limited this review to a discussion of a narrow temporal scope (2017-April 2019), while embracing a broad subject scope, i.e., considering any polymers and NPs which form catalytic nanocomposites. This gives us a unique view of the field of catalytic polymer nanocomposites and allows understanding of where the field is going.

10.
Front Chem ; 7: 834, 2019.
Article in English | MEDLINE | ID: mdl-31850320

ABSTRACT

Conversion of biomass cellulose to value-added chemicals and fuels is one of the most important advances of green chemistry stimulated by needs of industry. Here we discuss modern trends in the development of catalysts for two processes of cellulose conversion: (i) hydrolytic hydrogenation with the formation of hexitols and (ii) hydrogenolysis, leading to glycols. The promising strategies include the use of subcritical water which facilitates hydrolysis, bifunctional catalysts which catalyze not only hydrogenation, but also hydrolysis, retro-aldol condensation, and isomerization, and pretreatment (milling) of cellulose together with catalysts to allow an intimate contact between the reaction components. An important development is the replacement of noble metals in the catalysts with earth-abundant metals, bringing down the catalyst costs, and improving the environmental impact.

11.
Int J Biol Macromol ; 120(Pt A): 896-905, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30171957

ABSTRACT

Here we report immobilization of glucose oxidase (GOx) on magnetic silica (Fe3O4-SiO2) and alumina (Fe3O4-Al2O3) functionalized with amino groups using glutaraldehyde as a linker. Magnetic support based biocatalysts demonstrate high catalytic activity in d-glucose oxidation to D-gluconic acid at pH 5-7.5 and temperature of 30-50 °C with the best activities of 95% and 91% for magnetic silica and alumina, respectively. A comparison of magnetic and non-magnetic alumina and silica shows a significant enhancement of the relative catalytic activity for magnetic supports, while the silica based biocatalysts show a higher activity than the biocatalysts based on alumina. A noticeably higher activity of GOx immobilized on magnetic supports is explained by synergy of the GOx inherent activity and enzyme-like activity of iron oxide nanoparticles, while the enhancement with silica based catalysts is most likely due to a larger pore size and stronger Brønsted acid sites. Excellent relative activity of Fe3O4-SiO2-GOx (95% of native GOx) in a tolerant pH and temperature range as well as high stability in a repeated use (6% relative activity loss after five catalytic cycles) makes this catalyst promising for practical applications.


Subject(s)
Enzymes, Immobilized/chemistry , Enzymes/chemistry , Glucose Oxidase/chemistry , Glucose/chemistry , Aluminum Oxide/chemistry , Catalysis , Hydrogen-Ion Concentration , Magnetic Phenomena , Oxidation-Reduction , Silicon Dioxide/chemistry
12.
ACS Omega ; 3(11): 14717-14725, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458148

ABSTRACT

This paper reports the development of robust Pd- and Ru-containing magnetically recoverable catalysts in a one-pot procedure using commercially available, branched polyethyleneimine (PEI) as capping and reducing agent. For both catalytic metals, ∼3 nm nanoparticles (NPs) are stabilized in the PEI shell of magnetite NPs, whose aggregation allows for prompt magnetic separation. The catalyst properties were studied in a model reaction of 4-nitrophenol hydrogenation to 4-aminophenol with NaBH4. A similar catalytic NP size allowed us to decouple the NP size impact on the catalytic performance from other parameters and to follow the influence of the catalytic metal type and amount as well as the PEI amount on the catalytic activity. The best catalytic performances, the 1.2 min-1 rate constant and the 433.2 min-1 turnover frequency, are obtained for the Ru-containing catalyst. This is discussed in terms of stability of Ru hydride facilitating the surface-hydrogen transfer and the presence of Ru4+ species on the Ru NP surface facilitating the nitro group adsorption, both leading to an increased catalyst efficiency. High catalytic activity as well as the high stability of the catalyst performance in five consecutive catalytic cycles after magnetic separation makes this catalyst promising for nitroarene hydrogenation reactions.

14.
ACS Appl Mater Interfaces ; 8(33): 21285-93, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27484222

ABSTRACT

Biomass processing to value-added chemicals and biofuels received considerable attention due to the renewable nature of the precursors. Here, we report the development of Ru-containing magnetically recoverable catalysts for cellulose hydrogenolysis to low alcohols, ethylene glycol (EG) and propylene glycol (PG). The catalysts are synthesized by incorporation of magnetite nanoparticles (NPs) in mesoporous silica pores followed by formation of 2 nm Ru NPs. The latter are obtained by thermal decomposition of ruthenium acetylacetonate in the pores. The catalysts showed excellent activities and selectivities at 100% cellulose conversion, exceeding those for the commercial Ru/C. High selectivities as well as activities are attributed to the influence of Fe3O4 on the Ru(0)/Ru(4+) NPs. A facile synthetic protocol, easy magnetic separation, and stability of the catalyst performance after magnetic recovery make these catalysts promising for industrial applications.

15.
J Phys Chem A ; 117(20): 4073-83, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23611120

ABSTRACT

The kinetics of D-glucose hydrogenation on the catalyst containing Ru nanoparticles in the matrix of hypercrosslinked polystyrene was studied. Two routes of the hydrogenation reaction were revealed; their rates differ by several digits. The first route includes the interaction of d-glucose with the spilled-over hydrogen supplied by the catalyst; the second one includes classical interaction of the sorbed substrate with incident hydrogen from the reaction medium. A mathematical description of D-glucose conversion and the change of the catalyst activity by the first method of D-glucose hydrogenation were obtained. The most probable scheme of the process flow was suggested. The main kinetic parameters were calculated. The role of hydrogen spillover phenomenon in the kinetics of the processes is discussed.


Subject(s)
Glucose/chemistry , Metal Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polystyrenes/chemistry , Ruthenium/chemistry , Catalysis , Hydrogenation , Organometallic Compounds/chemical synthesis , Particle Size , Porosity , Surface Properties
16.
Nanoscale ; 5(7): 2921-7, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23455042

ABSTRACT

We report a novel method for synthesis of alloy PtFe nanoparticles (NPs) of different compositions using γ-Fe2O3 NPs as an iron source. We show here other growth mechanisms than conventional nucleation on a NP surface leading to core-shell NP or seeded NP growth. Depending on reaction conditions, different compositions of PtFe NPs can be obtained. PtFe NPs may coexist with γ-Fe2O3 NPs in the reaction product. This mixture obtained in situ allows much higher catalytic activity in hydrogenation of methyl-3-buten-2-ol than that of only PtFe nanoparticles or merely mixed PtFe and γ-Fe2O3 NPs. The presence of both PtFe and γ-Fe2O3 NPs allows formation of dense and stable NP arrays which hold promise for catalytic applications in microreactors or other reactor designs where a catalytic film is favoured.

17.
Langmuir ; 29(1): 466-73, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23234434

ABSTRACT

Here we report the functionalization of monodisperse iron oxide nanoparticles (NPs) with commercially available functional acids containing multiple double bonds such as linolenic (LLA) and linoleic (LEA) acids or pyridine moieties such as 6-methylpyridine-2-carboxylic acid, isonicotinic acid, 3-hydroxypicolinic acid, and 6-(1-piperidinyl)pyridine-3-carboxlic acid (PPCA). Both double bonds and pyridine groups can be reacted with noble metal compounds to form catalytically active species in the exterior of magnetic NPs, thus making them promising magnetically recoverable catalysts. We determined that both LLA and LEA stabilize magnetic iron oxide NPs, allowing the formation of π-complexes with bis(acetonitrile)dichloropalladium(II) in the NP shells. In both cases, this leads to the formation of NP aggregates because of interparticle complexation. In the case of pyridine-containing ligands, only PPCA with two N-containing rings is able to provide NP stabilization and functionalization whereas other pyridine-containing acids did now allow sufficient steric stabilization. The interaction of PPCA-based particles with Pd acetate also leads to aggregation because of interparticle interactions, but the aggregates that are formed are much smaller. Nevertheless, the catalytic properties in the selective hydrogenation of dimethylethynylcarbinol (DMEC) to dimethylvinylcarbinol were the best for the catalyst based on LLA, demonstrating that the NP aggregates in all cases are penetrable for DMEC. Easy magnetic separation of this catalyst from the reaction solution makes it promising as a magnetically recoverable catalyst.


Subject(s)
Ferric Compounds/chemistry , Magnetics , Nanoparticles/chemistry , Catalysis , Linoleic Acid/chemistry , Molecular Structure , alpha-Linolenic Acid
18.
J Cell Biochem ; 101(5): 1148-64, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17295204

ABSTRACT

The hypothesis tested in the study suggests that mechanisms of the earlier described delayed or accelerated tumor progression may be regulated by the antiapoptotic and proapoptotic cellular programs activated in stress reactions of transformed cells to the host normal cellular environment. Therefore, spontaneously transformed hamster cell line STHE, its bcl-2-transduced line STHE-Bcl-2, and 64 of their descendant tumor cell variants naturally selected in two in vivo regimes (local tumor growth versus dissemination) were examined. The role of Bcl-2 and the possible activation of endogenous death-signaling Bax, Ras, and HSP90/HSP70 stress proteins in STHE (Bcl-2+/-) tumor cell variants were studied in dynamics of in vivo tumor progression. The data demonstrate: (1) Immediate in vivo activation of Bax and of HSP90/HSP70 stress proteins in disseminated STHE cells on the background of accelerated tumor progression; (2) No immediate activation of Bax and the gradual downregulation of Bcl-2 in STHE-Bcl-2 cells on the background of delayed tumor progression; (3) Alternative and mutually suppressive character of Bcl-2 and Bax expression in both regimes of tumor progression; (4) In the later stages of tumor progression, the regular transit of the initial Bcl-2 antiapoptotic, Bax-suppressing program, and the delayed tumor progression towards Bcl-2 loss, activation of Bax, and acceleration of tumor progression. Thus, the delay of tumor progression is apparently determined by the ability of Bcl-2-expressing tumor cells to extinguish the cell-damaging environmental stress signals and Bax activation, while its acceleration correlates with Bcl-2 loss, activation of proapoptotic Bax, and tumor cells damage.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , bcl-2-Associated X Protein/metabolism , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cricetinae , Disease Progression , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mesocricetus , Models, Biological , Phenotype , Selection, Genetic , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...