Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Sci Rep ; 12(1): 2791, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181675

ABSTRACT

Hip osteoarthritis (OA) is characterized by chronic pain, but there remains a mismatch between symptoms and radiological findings. Recently, brain connectivity has been implicated in the modulation of chronic peripheral pain, however its association with perceived pain in hip OA is not understood. We used resting-state functional magnetic resonance imaging (fMRI) to examine functional connectivity associated with pain in hip OA patients. Thirty participants with hip OA and 10 non-OA controls were recruited. Using the visual analogue scale (VAS), pain scores were obtained before and after performing a painful hip activity. All participants underwent 3.0 T resting-state fMRI, and functional connectivity of brain regions associated with pain was determined and compared between participants, and before and after hip activity. Relative to controls, functional connectivity between the secondary somatosensory cortex and left posterior insula was increased, and functional connectivity between the bilateral posterior insula and motor cortices was significantly decreased in hip OA participants. In response to painful hip activity, functional connectivity increased between the thalamus, periaqueductal grey matter and brainstem. Functional connections between brain regions associated with pain are altered in hip OA patients, and several connections are modulated by performing painful activity. Unique lateralization of left posterior insula and linked brain functional connectivity patterns allows assessment of pain perception in hip OA providing an unbiased method to evaluate pain perception and pain modulation strategies.


Subject(s)
Brain/physiopathology , Chronic Pain/physiopathology , Osteoarthritis, Hip/physiopathology , Brain/diagnostic imaging , Brain Mapping , Chronic Pain/diagnostic imaging , Chronic Pain/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Osteoarthritis, Hip/complications , Osteoarthritis, Hip/diagnostic imaging , Pain Measurement , Pain Perception/physiology , Rest/physiology
2.
Sci Rep ; 6: 23076, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26983696

ABSTRACT

Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ "super-healer" strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not.


Subject(s)
Cartilage, Articular/injuries , Mesenchymal Stem Cells/cytology , Synovial Membrane/cytology , Animals , Ataxin-1/metabolism , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Chondrogenesis , Disease Models, Animal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Injections, Intra-Articular , Magnetic Resonance Imaging , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Osteoarthritis/pathology , Osteoarthritis/therapy , Synovial Membrane/metabolism , Time Factors , Wound Healing
3.
Anal Chim Acta ; 910: 25-35, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26873465

ABSTRACT

Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top.

4.
Restor Neurol Neurosci ; 33(4): 579-88, 2015.
Article in English | MEDLINE | ID: mdl-23902985

ABSTRACT

PURPOSE: Stroke is the third leading cause of death and permanent disability in the United States, often producing long-term cognitive impairments, which are not easily recapitulated in animal models. The goals of this study were to assess whether: (1) the endothelin-1 (ET-1) model of chronic stroke produced discernable cognitive deficits; (2) a spatial operant reversal task (SORT) would accurately measure memory deficits in this model; and (3) bone-marrow-derived mesenchymal stem cells (BMMSCs) could reduce any observed deficits. METHODS: Rats were given unilateral intracerebral injections of vehicle or ET-1, a stroke-inducing agent, near the middle cerebral artery. Seven days later, they were given intrastriatal injections of BMMSCs or vehicle, near the ischemic penumbra. The cognitive abilities of the rats were assessed on a novel SORT, which was designed to efficiently distinguish cognitive deficits from potential motoric confounds. RESULTS: Rats given ET-1 had significantly more cognitive errors at six weeks post-stroke on the SORT, and that these deficits were attenuated by BMMSC transplants. CONCLUSIONS: These findings indicate that: (1) the ET-1 model produces chronic cognitive deficits; (2) the SORT efficiently measures cognitive deficits that are not confounded by motoric impairment; and (3) BMMSCs may be a viable treatment for stroke-induced cognitive dysfunction.


Subject(s)
Cognition Disorders/therapy , Mesenchymal Stem Cell Transplantation , Stroke/therapy , Animals , Body Weight , Brain/pathology , Chronic Disease , Cognition Disorders/etiology , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Conditioning, Operant , Disease Models, Animal , Endothelin-1 , Female , Male , Mesenchymal Stem Cell Transplantation/methods , Psychological Tests , Rats, Sprague-Dawley , Stroke/pathology , Stroke/physiopathology , Stroke/psychology , Treatment Outcome
5.
Bone ; 64: 263-72, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24780879

ABSTRACT

In the current study, we used an estrogen-deficient mouse model of osteoporosis to test the efficacy of a cell-generated bone tissue construct for bone augmentation of an impaired healing fracture. A reduction in new bone formation at the defect site was observed in ovariectomized fractures compared to the control group using repeated measures in vivo micro-computed tomography (µCT) imaging over 4 weeks. A significant increase in the bone mineral density (BMD), trabecular bone volume ratio, and trabecular number, thickness and connectivity were associated with fracture repair in the control group, whereas the fractured bones of the ovariectomized mice exhibited a loss in all of these parameters (p<0.001). In a separate group, ovariectomized fractures were treated with murine embryonic stem (ES) cell-derived osteoblasts loaded in a three-dimensional collagen I gel and recovery of the bone at the defect site was observed. A significant increase in the trabecular bone volume ratio (p<0.001) and trabecular number (p<0.01) was observed by 4 weeks in the fractures treated with cell-loaded collagen matrix compared to those treated with collagen I alone. The stem cell-derived osteoblasts were identified at the fracture site at 4 weeks post-implantation through in situ hybridization histochemistry. Although this cell tracking method was effective, the formation of an ectopic cellular nodule adjacent to the knee joints of two mice suggested that alternative in vivo cell tracking methods should be employed in order to definitively assess migration of the implanted cells. To our knowledge, this study is the first of its kind to examine the efficacy of stem cell therapy for fracture repair in an osteoporosis-related fracture model in vivo. The findings presented provide novel insight into the use of stem cell therapies for bone injuries.


Subject(s)
Embryonic Stem Cells/cytology , Fracture Healing , Models, Animal , Pluripotent Stem Cells/cytology , Stem Cell Transplantation , Animals , In Situ Hybridization , Male , Mice , X-Ray Microtomography
6.
Osteoarthritis Cartilage ; 21(9): 1365-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23973151

ABSTRACT

OBJECTIVE: Develop a sensitive, functional biomarker of persistent joint pain in a large animal model of experimental osteoarthritis. Evaluate Impulse Ratio as a measure of weight distribution among supporting limbs throughout the early natural history of osteoarthritis and with local anaesthesia and analgesia. DESIGN: The distribution of weight bearing in the trot of 11 skeletally-mature dogs was analyzed before and after unilateral surgical intervention (cranial cruciate transection or distal femoral focal impact). The short-term effects of two analgesic treatments (intra-articular lidocaine and intra-dermal meloxicam) were then evaluated as an index of pain relief based on the redistribution of weight-bearing impulse between normal and injured limbs. RESULTS: Impulse Ratio was able to resolve weight redistribution between limbs in both long-term (weekly for over 400 days) and short-term (15 min intervals) joint evaluations. Joint pain relief from lidocaine administration could be reliably tracked over its brief acting time course. Meloxicam administration resulted in ambiguous results, where average weight bearing in the injured limb did not increase, but the variability of limb use changed transiently and reversibly. CONCLUSION: Joint function and the role of persistent joint pain in the development of osteoarthritis can be investigated effectively and efficiently in a large animal model through the use of Impulse Ratio. Impulse Ratio can be a functionally relevant and sensitive biomarker of locomotion-related joint pain.


Subject(s)
Arthralgia/drug therapy , Arthritis, Experimental/drug therapy , Gait/drug effects , Lidocaine/pharmacology , Osteoarthritis, Knee/drug therapy , Thiazines/pharmacology , Thiazoles/pharmacology , Anesthetics, Local/pharmacology , Animals , Anterior Cruciate Ligament Injuries , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthralgia/etiology , Arthralgia/physiopathology , Arthritis, Experimental/complications , Arthritis, Experimental/physiopathology , Biomarkers , Disease Models, Animal , Dogs , Female , Femoral Fractures/complications , Femoral Fractures/drug therapy , Femoral Fractures/physiopathology , Gait/physiology , Injections, Intra-Articular , Injections, Intradermal , Male , Meloxicam , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/physiopathology , Pilot Projects , Weight-Bearing/physiology
7.
Osteoarthritis Cartilage ; 20(5): 413-421, 2012 May.
Article in English | MEDLINE | ID: mdl-22313971

ABSTRACT

OBJECTIVE: Structural and biochemical changes in articular cartilage occur throughout the pathogenesis of osteoarthritis (OA). Early changes include proteoglycan loss and collagen network disorganization at or near the articular surface. These changes accompany reductions in mechanical properties of cartilage, yet the relationships between mechanics and structure in early OA are poorly defined. Thus, the overall goal of this work was to measure changes in the microscale mechanics and structure of the articular surface in an in vivo model of OA to better understand the early pathogenesis of cartilage degeneration in this disease. DESIGN: A canine cranial cruciate ligament transection (CCL(x)) model was used. The contralateral joint served as an internal control (Ctl). The frequency dependence of the dynamic indentation modulus (E(∗)) was evaluated, and creep behavior was measured to estimate the instantaneous (E(i,inst)) and equilibrium (E(i,eq)) indentation moduli and longest creep time-constant (τ). These functional parameters were related to microscopic metrics of cartilage structure and biochemistry, measured by polarized light microscopy and digital densitometry of proteoglycan staining by safranin-O. RESULTS: CCL(x) and Ctl cartilage exhibited frequency sensitivity. E(i,inst), E(i,eq), and τ were lower in CCL(x) vs Ctl cartilage. These mechanical changes were accompanied by a reduction in superficial zone thickness and changes in superficial zone collagen organization, as well as a non-significant reduction in superficial zone proteoglycan staining. CONCLUSIONS: Changes in the microscale viscoelastic behavior of the cartilage surface are a functional hallmark of early OA that accompany significant changes to the microstructural organization of the collagenous extracellular matrix.


Subject(s)
Arthritis, Experimental/physiopathology , Cartilage, Articular/physiopathology , Osteoarthritis/physiopathology , Animals , Anterior Cruciate Ligament Injuries , Arthritis, Experimental/etiology , Dogs , Elasticity , Microscopy, Atomic Force , Osteoarthritis/etiology , Stress, Mechanical , Surface Properties , Viscosity
8.
Osteoarthritis Cartilage ; 20(6): 476-85, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22353747

ABSTRACT

OBJECTIVE: To compare the MANKIN and OARSI cartilage histopathology assessment systems using human articular cartilage from a large number of donors across the adult age spectrum representing all levels of cartilage degradation. DESIGN: Human knees (n=125 from 65 donors; age range 23-92) were obtained from tissue banks. All cartilage surfaces were macroscopically graded. Osteochondral slabs representing the entire central regions of both femoral condyles, tibial plateaus, and the patella were processed for histology and Safranin O - Fast Green staining. Slides representing normal, aged, and osteoarthritis (OA) tissue were scanned and electronic images were scored online by five observers. Statistical analysis was performed for inter- and intra-observer variability, reproducibility and reliability. RESULTS: The inter-observer variability among five observers for the MANKIN system showed a similar good Intra-class correlation coefficient (ICC>0.81) as for the OARSI system (ICC>0.78). Repeat scoring by three of the five readers showed very good agreement (ICC>0.94). Both systems showed a high reproducibility among four of the five readers as indicated by the Spearman's rho value. For the MANKIN system, the surface represented by lesion depth was the parameter where all readers showed an excellent agreement. Other parameters such as cellularity, Safranin O staining intensity and tidemark had greater inter-reader disagreement. CONCLUSION: Both scoring systems were reliable but appeared too complex and time consuming for assessment of lesion severity, the major parameter determined in standardized scoring systems. To rapidly and reproducibly assess severity of cartilage degradation, we propose to develop a simplified system for lesion volume.


Subject(s)
Cartilage, Articular/pathology , Knee Joint/pathology , Osteoarthritis, Knee/pathology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Clinical Competence , Female , Femur/pathology , Humans , Male , Middle Aged , Observer Variation , Patella/pathology , Reproducibility of Results , Tibia/pathology , Young Adult
9.
Rev Sci Instrum ; 82(5): 054703, 2011 May.
Article in English | MEDLINE | ID: mdl-21639528

ABSTRACT

Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

10.
Scand J Med Sci Sports ; 21(4): 543-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20459477

ABSTRACT

Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 µm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 µm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair.


Subject(s)
Athletes , Knee Injuries/pathology , Menisci, Tibial/anatomy & histology , Tibial Meniscus Injuries , Wound Healing/physiology , Animals , Athletic Injuries/pathology , Cadaver , Humans , Knee Injuries/etiology , Male , Middle Aged , Risk Assessment
12.
J Biomech ; 40(1): 149-56, 2007.
Article in English | MEDLINE | ID: mdl-16378613

ABSTRACT

Growth plates are highly inhomogeneous in morphology and composition. Mechanical loading can modulate longitudinal bone growth, though the mechanisms underlying this mechanobiology are poorly understood. The proximal tibial growth plates of six rats were tested in vitro under uniaxial compression to 5% strain, and confocal microscopy was used to track and capture images of fluorescently labeled cell nuclei with increasing applied strains. The local strain patterns through the growth plate thickness were quantified using texture correlation analysis. The technique of texture correlation analysis was first validated by comparing theoretical simulated strain maps generated from numerically distorted images. The texture correlation algorithm was sensitive to the grid size superimposed on the original image, but remained insensitive to parameters related to the size of the final image mask, which was searched by the correlation algorithm for each grid point of the original image. Within the growth plate, experimental strain distributions were non-uniform in all six specimens. Growth plates were mostly under compression strains. The strain distributions differed among the histomorphological zones of the growth plate, which was most obvious in specimens with regular growth plate shape: higher compressive strains (4-8 times higher than the applied 5% strain) were located mainly in regions overlapping the reserve and hypertrophic zones with lower compressive strains in the proliferative zone. This study documents the non-uniform mechanical behavior of growth plate across its three histological zones when exposed to compression. Further investigation is required to establish the significance of non-uniform strain fields during growth in vivo.


Subject(s)
Growth Plate/physiology , Algorithms , Animals , Biomechanical Phenomena/instrumentation , Bone Development/physiology , Compressive Strength , Female , Growth Plate/anatomy & histology , In Vitro Techniques , Microscopy, Confocal , Models, Biological , Rats , Rats, Sprague-Dawley , Stress, Mechanical
13.
Osteoarthritis Cartilage ; 14(2): 120-30, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16242973

ABSTRACT

OBJECTIVE: The purpose of this study was to determine if the opposing cartilages of the feline patellofemoral joint adapted differently to short-term anterior cruciate ligament transection (ACL-T) and if the magnitude of chondrocyte deformation upon tissue loading was altered under ACL-T conditions compared to contralateral controls. In situ static compression of physiological magnitude was applied to the feline patellofemoral cartilage 16 weeks post-ACL-T and cartilage and chondrocyte deformation were evaluated by histomorphometry. DESIGN: Six adult cats were euthanized 16 weeks after unilateral ACL-T. A peak surface pressure of 9 MPa was applied to the fully intact patella and femoral groove cartilages. After in situ fixation under compression, sections from the centre of the indent and from an adjacent unloaded area of the cartilages were analysed. Chondrocyte shape, size, clustering and volumetric fraction were quantified. RESULTS: Experimental patellar articular cartilage was thicker, contained larger chondrocytes that were more frequently arranged in clusters and had, on average, a larger chondrocyte volumetric fraction compared to contralateral controls. In contrast, the experimental femoral groove cartilage demonstrated little adaptation to ACL-T. CONCLUSIONS: The patellar articular cartilage adapts to short-term ACL-T to a greater extent than femoral groove cartilage. We speculate that differences in the histological parameters of control tissues, such as cartilage thickness and the magnitude and depth distribution of chondrocyte shape, size and volumetric fraction may contribute to predisposing patellar cartilage, and not femoral groove cartilage, to adaptation after ACL-T.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular/pathology , Chondrocytes/pathology , Adaptation, Physiological , Animals , Cats , Cell Adhesion , Cell Shape , Cell Size , Femur , Hindlimb , Male , Patella , Pressure , Rheology
14.
Osteoarthritis Cartilage ; 13(12): 1100-14, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16165376

ABSTRACT

OBJECTIVE: The purposes of this study were to quantify patellofemoral histology in the feline knee 67 months post-anterior cruciate ligament transection (ACL-T) and to apply an in situ static load of physiological magnitude to the articular cartilage and evaluate the resulting cartilage and chondrocyte deformation. DESIGN: Six cats were sacrificed 67+/-6 months post-unilateral ACL-T. Static compression was applied to the cartilage surfaces of the patellofemoral joint using a cylindrical metal indentor. After fixation, full thickness osteochondral blocks were harvested and sections cut from not-indented and indented areas. Chondrocyte shape, orientation and volumetric fraction as well as cartilage thickness were evaluated. RESULTS: Experimental and contralateral patellae were histologically different compared to normal with thickened cartilage, rounded superficial chondrocytes, and uneven proteoglycan staining throughout. In contrast, no differences were apparent in 10 of the 12 femoral groove samples. The structural reorganisation of the experimental patellae cartilage that occurred with load was also different compared to normal. Specifically, the indentation shape was deeper and had steeper sides and the realignment of deep zone cells at angles of 45 degrees and 135 degrees observed in normal cartilage was no longer apparent in the experimental tissue. CONCLUSIONS: Two directly articulating cartilage surfaces of the feline patellofemoral joint have completely contrasting responses to long-term ACL-T. We speculate that this could be a result of the different nature of the loads experienced by the two surfaces (intermittent vs constant) and/or the differences in the histology and material properties of the two tissues in their normal state, and/or an inherent difference in the biological response capabilities of the articular cartilages.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular/pathology , Chondrocytes/pathology , Joints/pathology , Adaptation, Physiological , Animals , Cats , Cell Shape , Hindlimb , In Vitro Techniques , Male , Stress, Mechanical , Time Factors
15.
Connect Tissue Res ; 46(4-5): 211-9, 2005.
Article in English | MEDLINE | ID: mdl-16546824

ABSTRACT

The mechanisms by which chondrocytes modulate longitudinal bone growth are not well understood. This in vitro study investigated the effects of loading on the mRNA expression pattern of key molecular components of the growth-plate related to the extracellular matrix (type II and type X collagen) and the PTH-PTHrP feedback loop. Short-term static compressive loading was applied to rat proximal tibial growth-plate explants. Four age groups at specific developmental stages were investigated. The spatial variation in the mRNA expression was compared among loaded explants, their contralateral sham controls, and uncultured growth plates from normal animals. Basic cell metabolism (18S rRNA) was unaffected by load. Results indicated a narrower spatial distribution of mRNA expression of type II collagen throughout the growth plate; similarly, a narrowed distribution of expression of type X collagen was noted in the lower hypertrophic zone of the growth-plate. This suggests that mechanical compression influences chondrocytes of the hypertrophic zone to alter their expression of specific genes encoding proteins of the extracellular matrix, while PTH-PTHrP receptor mRNA, a regulatory protein, remained unaffected by loading. The effects of compression were similar at the different stages of growth, suggesting that additional factors may be involved in the clinical progression of skeletal deformities observed during growth spurts. Although this study was done in vitro and limited to static loading, it furthers our understanding of growth-plate mechanobiology as a first step toward providing a scientific rationale for treating progressive musculoskeletal deformities.


Subject(s)
Bone Development/physiology , Chondrocytes/metabolism , Collagen Type II/genetics , Collagen Type X/genetics , Growth Plate/physiology , RNA, Messenger/metabolism , Animals , Animals, Newborn , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/metabolism , Bone Diseases, Developmental/therapy , Female , Gene Expression Regulation, Developmental/physiology , Parathyroid Hormone-Related Protein/genetics , RNA, Ribosomal, 18S/metabolism , Rats , Rats, Sprague-Dawley , Weight-Bearing/physiology
16.
Ann Rheum Dis ; 63(6): 709-17, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15140779

ABSTRACT

OBJECTIVES: To detect changes in the collagen fibril network in articular cartilage in a canine experimental model of early osteoarthritis (OA) using microscopic magnetic resonance imaging (microMRI) and polarised light microscopy (PLM). METHODS: Eighteen specimens from three pairs of the medial tibia of an anterior cruciate ligament transection canine model were subjected to microMRI and PLM study 12 weeks after surgery. For each specimen, the following experiments were carried out: (a) two dimensional microMRI images of T(2) relaxation at four orientations; (b) the tangent Young's modulus; and (c) two dimensional PLM images of optical retardance and fibril angle. Disease induced changes in tissue were examined across the depth of the cartilage at a microMRI resolution of 13.7-23.1 microm. RESULTS: Several distinct changes from T(2) weighted images of cartilage in OA tibia were seen. For the specimens that were covered at least in part by the meniscus, the significant changes in microMRI included a clear shift in the depth of maximum T(2) (21-36%), a decrease in the superficial zone thickness (37-38%), and an increase in cartilage total thickness (15-27%). These microMRI changes varied topographically in the tibia surface because they were not significant in completely exposed locations in medial tibia. The microMRI results were confirmed by the PLM measurements and correlated well with the mechanical measurements. CONCLUSION: Both microMRI and PLM can detect quantitatively changes in collagen fibre architecture in early OA and resolve topographical variations in cartilage microstructure of canine tibia.


Subject(s)
Cartilage, Articular/pathology , Magnetic Resonance Imaging/methods , Microscopy, Polarization/methods , Osteoarthritis/pathology , Animals , Anterior Cruciate Ligament/pathology , Disease Models, Animal , Dogs , Elasticity , Hindlimb , Stress, Mechanical , Tibia
17.
Calcif Tissue Int ; 74(5): 437-47, 2004 May.
Article in English | MEDLINE | ID: mdl-14961208

ABSTRACT

Cortical bone is perforated by a network of canals that have a significant impact upon its material properties. Microcomputed tomography offers the possibility of noninvasively visualizing and quantifying cortical pores in both two and three dimensions. Establishing how two-dimensional (2D) microcomputed tomographic (microCT) analysis compares with conventional methods for analyzing cortical porosity is an important prerequisite for the wider adoption of this technique and the development of three-dimensional (3D) analysis. Therefore, we compared porosity-related parameters from 2D microcomputed tomographic images with those from matching microradiographic sections. Samples from five human femora were scanned at a 10-microm resolution and then sequentially sectioned and microradiographed. An average of eight image pairs were produced from each femur (total, n = 41). The repeatability and comparability of the two techniques was assessed for three parameters; cortical porosity (%), mean pore area (microm(2)), and pore density (pores/mm(2)). For repeatability, no significant difference ( P > 0.05) was found between the two methods for cortical porosity and mean pore area; however, pore density differed significantly ( P < 0.001). For comparability, the bias (+/- error) between the methods was found to be 0.51% (+/-0.31%) for cortical porosity and -155 microm(2) (+/-293 microm(2)) for mean pore area. The bias for pore density was dependent upon measurement size with microcomputed tomographic images having 14% (+/-9.3%) fewer pores per millimeter squared. The qualitative and quantitative similarities between the two techniques demonstrated the utility of 2D microcomputed tomographic for cortical porosity analysis. However, the relatively poor results for pore density revealed that a higher resolution (<10 microm) is needed to consistently visualize all cortical pores in human bone.


Subject(s)
Femur/diagnostic imaging , Femur/ultrastructure , Microradiography/methods , Humans , Image Processing, Computer-Assisted , Reproducibility of Results , Tomography, X-Ray Computed
18.
Tissue Eng ; 9(4): 667-77, 2003 Aug.
Article in English | MEDLINE | ID: mdl-13678445

ABSTRACT

An understanding of developmental biology can provide useful insights into how different tissue-engineered repairs might be designed. During embryogenesis of the intervertebral disk, the cells of the notochord play a critical role in initiating tissue formation, and may be responsible for development of the nucleus pulposus. In some species, including humans, these notochordal cells may eventually be lost, either through apoptosis or terminal differentiation, and are replaced by chondrocyte-like cells. However, there is some evidence that the notochordal cells may persist in at least some humans. This review discusses some of the potential applications of notochordal cells in tissue engineering of the nucleus pulposus.


Subject(s)
Intervertebral Disc/cytology , Notochord/cytology , Tissue Engineering , Animals , Dogs , Humans , Stem Cells , Swine
19.
J Anat ; 203(2): 223-33, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12924822

ABSTRACT

In the developing chondroepiphyses of long bones, the avascular cartilaginous anlage is invaded by numerous blood vessels, through the process of angiogenesis. The objective of this study was to investigate the chronology of this vascular invasion with the spontaneous calcification of the cartilaginous epiphysis during development of the secondary ossification centre in the rabbit distal femur. The time-course of chondroepiphyseal vascular invasion was determined histologically and standardized for eight gestational and four postnatal intervals by plotting kit body mass against crown-rump length. Similarly, microcomputed tomography (micro-CT) helped to visualize calcification at those same gestational and postnatal intervals. To confirm the angiogenic nature of the avascular chondroepiphysis, such samples were assayed on the chick chorio-allantoic membrane (CAM). Neovascular outgrowths from the CAM were apparent 48 h following introduction of an 18-day (gestational) chondroepiphyseal sample. Chondroepiphyseal samples were assayed for the potent developmental angiogenic factors bFGF and VEGF, with the mRNA expression for both these mediators being confirmed using RT-PCR. As angiogenesis and calcification during chondroepiphyseal development occur in a defined tissue environment initially devoid of blood vessels and mineral, those processes provided a unique opportunity to study their progression without complication of injury-related inflammation or extant vasculature and mineral. Furthermore, the discovery of angiogenic, angiostatic or mineral-regulating mediators specific to developing connective tissue may prove useful for analysing the regulation of vascular and mineral pathogenesis in articular tissues.


Subject(s)
Cartilage/embryology , Chondrogenesis/physiology , Femur/embryology , Neovascularization, Physiologic , Actins/genetics , Animals , Biomarkers/analysis , Cartilage/blood supply , Cartilage/diagnostic imaging , Chick Embryo , Endothelial Growth Factors/genetics , Epiphyses/blood supply , Epiphyses/diagnostic imaging , Epiphyses/embryology , Female , Femur/blood supply , Femur/diagnostic imaging , Fibroblast Growth Factor 2/genetics , Gene Expression , Image Processing, Computer-Assisted , Immunohistochemistry/methods , Intercellular Signaling Peptides and Proteins/genetics , Lymphokines/genetics , Osteogenesis/physiology , Rabbits , Radiography , Reverse Transcriptase Polymerase Chain Reaction , Thrombomodulin/analysis , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
20.
J Biomech ; 36(4): 553-68, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12600346

ABSTRACT

The mechanical environment is an important factor affecting the maintenance and adaptation of articular cartilage, and thus the function of the joint and the progression of joint degeneration. Recent evidence suggests that cartilage deformation caused by mechanical loading is directly associated with deformation and volume changes of chondrocytes. Furthermore, in vitro experiments have shown that these changes in the mechanical states of chondrocytes correlate with a change in the biosynthetic activity of cartilage cells. The purpose of this study was to apply our knowledge of contact forces within the feline patellofemoral joint to quantify chondrocyte deformation in situ under loads of physiological magnitude. A uniform, static load of physiological magnitude was applied to healthy articular cartilage still fully intact and attached to its native bone. The compressed cartilage was then chemically fixed to enable the evaluation of cartilage strain, chondrocyte deformation and chondrocyte volumetric fraction. Patella and femoral groove articular cartilages differ in thickness, chondrocyte aspect ratio, and chondrocyte volumetric fraction in both magnitude and depth distribution. Furthermore, when subjected to the same compressive loads, changes to all of these parameters differ in magnitude and depth distribution between patellar and femoral groove articular cartilage. This evidence suggests that significant chondrocyte deformation likely occurs during in vivo joint loading, and may influence chondrocyte biosynthetic activity. Furthermore, we hypothesise that the contrasts between patella and femoral groove cartilages may explain, in part, the site-specific progression of osteoarthritis in the patellofemoral joint of the feline anterior cruciate ligament transected knee.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Chondrocytes/cytology , Chondrocytes/physiology , Weight-Bearing/physiology , Adaptation, Physiological/physiology , Animals , Cats , Cell Polarity/physiology , Compressive Strength , Elasticity , Femur/physiology , Hindlimb/physiology , In Vitro Techniques , Knee Joint/cytology , Knee Joint/physiology , Male , Patella/physiology , Reference Values , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...