Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0295860, 2024.
Article in English | MEDLINE | ID: mdl-38206902

ABSTRACT

OBJECTIVE: To examine acute seizure activity and neuronal damage in a neonatal mouse model of inflammation-sensitized hypoxic-ischemic (IS-HI) brain injury utilizing continuous electroencephalography (cEEG) and neurohistology. METHODS: Neonatal mice were exposed to either IS-HI with Escherichia coli lipopolysaccharide (LPS) or HI alone on postnatal (p) day 10 using unilateral carotid artery ligation followed by global hypoxia (n = 10 [5 female, 5 male] for IS-HI, n = 12 [5 female, 7 male] for HI alone). Video cEEG was recorded for the duration of the experiment and analyzed for acute seizure activity and behavior. Brain tissue was stained and scored based on the degree of neuronal injury in the hippocampus, cortex, and thalamus. RESULTS: There was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI with regards to seizure duration (mean = 63 ± 6 seconds for HI vs mean 62 ± 5 seconds for IS-HI, p = 0.57) nor EEG background activity. Mice exposed to IS-HI had significantly more severe neural tissue damage at p30 as measured by neuropathologic scores (mean = 8 ± 1 vs 23 ± 3, p < 0.0001). INTERPRETATION: In a neonatal mouse model of IS-HI, there was no significant difference in acute seizure activity among mice exposed to IS-HI compared to HI. Mice exposed to IS-HI did show more severe neuropathologic damage at a later age, which may indicate the presence of chronic inflammatory mechanisms of brain injury distinct from acute seizure activity.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Animals , Mice , Male , Female , Animals, Newborn , Hypoxia-Ischemia, Brain/pathology , Hypoxia/pathology , Seizures , Inflammation/pathology , Brain Injuries/pathology , Disease Models, Animal , Ischemia/pathology , Brain/pathology
3.
Cereb Cortex ; 33(8): 4645-4653, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36137566

ABSTRACT

Postnatal maturation of the motor cortex is vital to developing a variety of functions, including the capacity for motor learning. The first postnatal weeks involve many neuronal and synaptic changes, which differ by region and layer, likely due to different functions and needs during development. Motor cortex layer II/III is critical to receiving and integrating inputs from somatosensory cortex and generating attentional signals that are important in motor learning and planning. Here, we examined the neuronal and synaptic changes occurring in layer II/III pyramidal neurons of the mouse motor cortex from the neonatal (postnatal day 10) to young adult (postnatal day 30) period, using a combination of electrophysiology and biochemical measures of glutamatergic receptor subunits. There are several changes between p10 and p30 in these neurons, including increased dendritic branching, neuronal excitability, glutamatergic synapse number and synaptic transmission. These changes are critical to ongoing plasticity and capacity for motor learning during development. Understanding these changes will help inform future studies examining the impact of early-life injury and experiences on motor learning and development capacity.


Subject(s)
Motor Cortex , Mice , Animals , Motor Cortex/physiology , Pyramidal Cells/physiology , Neurons/physiology , Synaptic Transmission , Synapses/physiology
4.
Sci Rep ; 11(1): 2910, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536448

ABSTRACT

Nucleoid-associated proteins (NAPs) are responsible for maintaining highly organized and yet dynamic chromosome structure in bacteria. The genus Mycobacterium possesses a unique set of NAPs, including Lsr2, which is a DNA-bridging protein. Importantly, Lsr2 is essential for the M. tuberculosis during infection exhibiting pleiotropic activities including regulation of gene expression (mainly as a repressor). Here, we report that deletion of lsr2 gene profoundly impacts the cell morphology of M. smegmatis, which is a model organism for studying the cell biology of M. tuberculosis and other mycobacterial pathogens. Cells lacking Lsr2 are shorter, wider, and more rigid than the wild-type cells. Using time-lapse fluorescent microscopy, we showed that fluorescently tagged Lsr2 forms large and dynamic nucleoprotein complexes, and that the N-terminal oligomerization domain of Lsr2 is indispensable for the formation of nucleoprotein complexes in vivo. Moreover, lsr2 deletion exerts a significant effect on the replication time and replisome dynamics. Thus, we propose that the Lsr2 nucleoprotein complexes may contribute to maintaining the proper organization of the newly synthesized DNA and therefore influencing mycobacterial cell cycle.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Cycle , DNA Replication , DNA, Bacterial/biosynthesis , Mycobacterium smegmatis/physiology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Intravital Microscopy , Protein Domains , Protein Multimerization , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...