Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35972204

ABSTRACT

Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Division , Cell Wall/metabolism , Gene Expression Regulation, Plant , Meristem/metabolism
2.
EMBO J ; 40(15): e106800, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34156108

ABSTRACT

How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.


Subject(s)
Arabidopsis/drug effects , Dipeptides/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Nicotiana/drug effects , Plant Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Computer Simulation , Dipeptides/chemistry , Dipeptides/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , NADP/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Pentose Phosphate Pathway/drug effects , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Plant Proteins/antagonists & inhibitors , Seedlings/drug effects , Seedlings/metabolism , Nicotiana/metabolism
3.
Curr Biol ; 31(15): 3262-3274.e6, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34107303

ABSTRACT

Mechanical stress influences cell- and tissue-scale processes across all kingdoms. It remains challenging to delineate how mechanical stress, originating at these different length scales, impacts cell and tissue form. We combine growth tracking of cells, quantitative image analysis, as well as molecular and mechanical perturbations to address this problem in pavement cells of Arabidopsis thaliana cotyledon tissue. We show that microtubule organization based on chemical signals and cell-shape-derived mechanical stress varies during early stages of pavement cell development and is mediated by the evolutionary conserved proteins, KATANIN and CLASP. However, we find that these proteins regulate microtubule organization in response to tissue-scale mechanical stress to different extents in the cotyledon epidermis. Our results further demonstrate that regulation of cotyledon form is uncoupled from the mechanical-stress-dependent control of pavement cell shape that relies on microtubule organization governed by subcellular mechanical stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Katanin , Microtubule-Associated Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cotyledon/metabolism , Katanin/genetics , Katanin/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Stress, Mechanical
4.
Nat Commun ; 12(1): 458, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469016

ABSTRACT

Cell shape is crucial for the function and development of organisms. Yet, versatile frameworks for cell shape quantification, comparison, and classification remain underdeveloped. Here, we introduce a visibility graph representation of shapes that facilitates network-driven characterization and analyses across shapes encountered in different domains. Using the example of complex shape of leaf pavement cells, we show that our framework accurately quantifies cell protrusions and invaginations and provides additional functionality in comparison to the contending approaches. We further show that structural properties of the visibility graphs can be used to quantify pavement cell shape complexity and allow for classification of plants into their respective phylogenetic clades. Therefore, the visibility graphs provide a robust and unique framework to accurately quantify and classify the shape of different objects.


Subject(s)
Cell Shape , Image Processing, Computer-Assisted/methods , Plant Leaves/cytology , Algorithms , Arabidopsis/cytology , Microscopy/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...