Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(1): 014008, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23221173

ABSTRACT

Scanning tunnelling spectroscopy (STS) was used to study the Luttinger liquid behaviour of the purple bronze Li(0.9)Mo(6)O(17) in the temperature range 5 K < T < 300 K. In the entire temperature range the suppression of the density of states at the Fermi energy can be fitted very well by a model describing the tunnelling into a Luttinger liquid at ambient temperature. The power-law exponent extracted from these fits reveals a significant increase above 200 K. It changes from α = 0.6 at low temperature to α = 1.0 at room temperature.


Subject(s)
Lithium Compounds/chemistry , Microscopy, Scanning Tunneling/methods , Models, Chemical , Models, Molecular , Rheology/methods , Solutions/chemistry , Computer Simulation , Phase Transition
2.
J Phys Condens Matter ; 25(1): 014015, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23220774

ABSTRACT

Atomic nanowires on the Au/Ge(001) surface are investigated for their structural and electronic properties using scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES). STM reveals two distinct symmetries: a c(8 × 2) describing the basic repeating distances, while the fine structure on top of the wires causes an additional superstructure of p(4 × 1). Both symmetries are long-range ordered as judged from low-energy electron diffraction. The Fermi surface is composed of almost perfectly straight sheets. Thus, the electronic states are one-dimensionally confined. Spatial dI/dV maps, where both topography and density of states (DOS) are probed simultaneously, reveal that the DOS at low energies, i.e. the conduction path, is oriented along the chain direction. This is fully consistent with the recently reported Tomonaga-Luttinger liquid phase of Au/Ge(001), with the density of states being suppressed by a power-law towards the Fermi energy.


Subject(s)
Germanium/chemistry , Models, Chemical , Models, Molecular , Nanotubes/chemistry , Nanotubes/ultrastructure , Quantum Theory , Computer Simulation , Electric Conductivity , Phase Transition
3.
Phys Rev Lett ; 107(16): 165702, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22107402

ABSTRACT

The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.

4.
Phys Rev Lett ; 95(18): 186402, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16383925

ABSTRACT

We present temperature dependent scanning tunneling spectroscopy data of the quasi-one-dimensional conductor Li0.9Mo6O17. The differential tunneling current in our low-temperature spectra shows a power-law behavior around the Fermi energy, which is expected for a clean Luttinger liquid. The power-law exponent is found to be 0.6. Spectra for a temperature range of 5 to 55 K can be fitted fairly well with a model for tunneling into a Luttinger liquid at the appropriate temperature. A fit with a model based on a zero bias anomaly is significantly worse compared to the Luttinger liquid model. No signature of a phase transition at T = 24 K is observed in our temperature dependent data.

5.
Science ; 289(5480): 746-8, 2000 Aug 04.
Article in English | MEDLINE | ID: mdl-10926529

ABSTRACT

Ferromagnetic (FM) spin fluctuations are believed to mediate the spin-triplet pairing for the p-wave superconductivity in Sr(2)RuO(4). Our experiments show that, at the surface, a bulk soft-phonon mode freezes into a static lattice distortion associated with an in-plane rotation of the RuO(6) octahedron. First-principle calculations confirm this structure and predict a FM ground state at the surface. This coupling between structure and magnetism in the environment of broken symmetry at the surface allows a reconsideration of the coupling mechanism in the bulk.

SELECTION OF CITATIONS
SEARCH DETAIL
...