Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 55(Pt 3): 631-43, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10089459

ABSTRACT

The enzyme hydroxymethylbilane synthase (HMBS, E.C. 4.3.1.8) catalyzes the conversion of porphobilinogen into hydroxymethylbilane, a key intermediate for the biosynthesis of heme, chlorophylls, vitamin B12 and related macrocycles. The enzyme is found in all organisms, except viruses. The crystal structure of the selenomethionine-labelled enzyme ([SeMet]HMBS) from Escherichia coli has been solved by the multi-wavelength anomalous dispersion (MAD) experimental method using the Daresbury SRS station 9.5. In addition, [SeMet]HMBS has been studied by MAD at the Grenoble ESRF MAD beamline BM14 (BL19) and this work is described especially with respect to the use of the ESRF CCD detector. The structure at ambient temperature has been refined, the R factor being 16.8% at 2. 4 A resolution. The dipyrromethane cofactor of the enzyme is preserved in its reduced form in the crystal and its geometrical shape is in full agreement with the crystal structures of authentic dipyrromethanes. Proximal to the reactive C atom of the reduced cofactor, spherical density is seen consistent with there being a water molecule ideally placed to take part in the final step of the enzyme reaction cycle. Intriguingly, the loop with residues 47-58 is not ordered in the structure of this form of the enzyme, which carries no substrate. Direct experimental study of the active enzyme is now feasible using time-resolved Laue diffraction and freeze-trapping, building on the structural work described here as the foundation.


Subject(s)
Hydroxymethylbilane Synthase/chemistry , Selenomethionine/chemistry , Binding Sites , Crystallography, X-Ray , Data Collection , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Selenium/chemistry , Temperature
2.
Eur J Biochem ; 211(3): 615-24, 1993 Feb 01.
Article in English | MEDLINE | ID: mdl-8436121

ABSTRACT

Hydroxymethylbilane synthase (HMBS) catalyses the conversion of porphobilinogen into hydroxymethylbilane, a linear tetrapyrrolic intermediate in the biosynthesis of haems, chlorophylls, vitamin B12 and related macrocycles. In the course of an investigation of the crystal structure of this enzyme, we intended to follow a new strategy to obtain the X-ray phase information, i.e. the collection of multiwavelength anomalous diffraction data from a crystal of a seleno-L-methionine (SeMet)-labelled variant of the protein. We have expressed and purified HMBS from Escherichia coli (34268 Da) in which all (six) methionine (Met) residues are replaced by SeMet. Complete replacement, as shown by amino acid composition analysis and by electrospray mass spectrometry, was achieved by growing the Met-requiring mutant E. coli PO1562 carrying the plasmid pPA410 in a medium containing 50 mg/l SeMet as the sole source of Met. [SeMet]HMBS exhibits full enzyme activity, as reflected by unchanged steady-state kinetic parameters relative to native enzyme. Rhombohedral crystals of [SeMet]HMBS could be grown at the pH optimum (7.4) of the enzyme (solutions containing 30 mg/ml protein, 0.4 mM EDTA, 20 mM dithiothreitol, 3 M NaCl and 15 mM Bristris-propane buffer were equilibrated by vapour diffusion at 20 degrees C against reservoirs of saturated NaCl). However, being very thin plates, these crystals were not suitable for X-ray analysis. Alternatively, rectangular crystals were obtained at pH 5.3 using conditions based on those reported for wild-type HMBS [sitting drops of 50 microliters containing 6-7 mg/ml protein, 0.3 mM EDTA, 15 mM dithiothreitol, 10% (mass/vol.) poly(ethylene glycol) 6000 and 0.01% NaN3 in 0.1 M sodium acetate were equilibrated by vapour diffusion at 20 degrees C against a reservoir of 10-20 mg solid dithiothreitol]. X-ray diffraction data of the crystals were complete to 93.8% at 0.21 nm resolution and showed that [SeMet]HMBS and native HMBS crystallise isomorphously. A difference Fourier map using FSeMet-Fnative and phases derived from the native structure, which has recently been determined independently by multiple isomorphous replacement, showed positive difference peaks centered at or close to where the sulphur atoms of the Met side chains appear in the native structure. In addition, paired positive/negative peaks in the difference map near the cofactor of HMBS indicate conformational differences in the active site, probably due to differences in the state of oxidation of the cofactor in the two crystalline samples.


Subject(s)
Escherichia coli/enzymology , Hydroxymethylbilane Synthase/chemistry , Selenomethionine/metabolism , X-Ray Diffraction , Amino Acids/analysis , Crystallization , Escherichia coli/genetics , Fourier Analysis , Homocysteine/metabolism , Hydroxymethylbilane Synthase/genetics , Hydroxymethylbilane Synthase/metabolism , Kinetics , Mass Spectrometry , Methylation , Molecular Structure , Mutagenesis , Transformation, Bacterial
3.
Mutat Res ; 37(1): 27-32, 1976 Oct.
Article in English | MEDLINE | ID: mdl-135208

ABSTRACT

The mutagenic activities of aflatoxins B1 and G1 were studied in the ad-3 test system of Neurospora crassa by treatment of conidia with aflatoxin and liver homogenate for 2 h. No significant increase in the ad-3 mutation frequency over the spontaneous frequency was observed when either aflatoxin or mammalian liver homogenate was omitted from the test system. The ad-3 mutation frequencies increased to between 29 and 87/10(6) survivors, which is a 73- to 217-fold increase over the average spontaneous ad-3 mutation frequency (0.4/10(6) survivors), after conidia of N. crassa were treated with 0.67 mM aflatoxin B1, hamster liver homogenate, and a NADPH generating system. A 9- to 15-fold increase in the mutation frequency over the spontaneous mutation frequency was found when 0.67 mM of aflatoxin G1 instead of aflatoxin B1 was used in the test system. Treatment of conidia with 0.44 mM aflatoxin B1 mice liver homogenate and a NADPH generating system caused a small, but significant increase in the ad-3 mutation frequencies. No significant increase in the mutation frequency was found when a single sample of human liver homogenate was used in the test system. These studies show that metabolic activation is necessary for the expression of the mutagenic activity of aflatoxins B1 and G1 in N. crassa.


Subject(s)
Aflatoxins/pharmacology , Microsomes, Liver/metabolism , Mutagens , Mutation , Neurospora crassa/drug effects , Neurospora/drug effects , Animals , Cricetinae , Female , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...