Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 60(1): 123-30, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26022603

ABSTRACT

Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar 'Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.


Subject(s)
Fruit/growth & development , Ice/adverse effects , Prunus avium/growth & development , Algorithms , Flowers/growth & development , Seasons , Temperature
2.
Int J Biometeorol ; 58(5): 703-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23456375

ABSTRACT

Seven different model approaches to calculate the onset of sour cherry blossom for the main growing regions in Rhineland-Palatinate (Germany) were compared. Three of the approaches were pure forcing models (M1, M2, M2DL) and the remaining four models were combined sequential chilling-forcing (CF) models. Model M1 was the commonly used growing degree day (GDD) model in which the starting date of temperature accumulation (t1), the base temperature (TBF) and the forcing requirement F* were optimized on the basis of observed data. Because of a relatively late optimal starting date (t1=1 March), the model can be applied only to calculate the onset of cherry blossom for present climate conditions. In order to develop forcing models that could possibly be used to estimate possible shifts in the timing of cherry blossom due to climate change, the starting date t 1 of the models was intentionally set to 1 January (M2, M2DL). Unfortunately, model M2 failed in both the optimization and validation period. The introduction of a daylength term (DL) in model M2DL improved model performance. In order to project possible shifts in the timing of plant phenological events, combined CF-models are preferred over pure GDD-models. For this reason four CF-models were developed with (M3DL, M4DL) and without (M3, M4) consideration of daylength in the GDD-approach. The chilling requirement was calculated using chilling hours (M3, M3DL) and chill portions (M4, M4DL). Both models without daylength estimated implausible model parameters and failed model validation. However, models M3DL and M4DL showed meaningful model parameter estimations and the error between modelled and observed data was markedly reduced. Moreover, the models optimized and validated (internal validation) for one sour cherry growing region in Germany, were applied successfully to calculate the beginning of the blossom period in other regions in Europe and even at one station in North America (external validation).


Subject(s)
Climate Change , Flowers/physiology , Models, Theoretical , Prunus/physiology , Calibration , Europe , Reproducibility of Results , Seasons , Spatial Analysis , Temperature , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...