Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 884128, 2022.
Article in English | MEDLINE | ID: mdl-35663548

ABSTRACT

Neuromorphic systems open up opportunities to enlarge the explorative space for computational research. However, it is often challenging to unite efficiency and usability. This work presents the software aspects of this endeavor for the BrainScaleS-2 system, a hybrid accelerated neuromorphic hardware architecture based on physical modeling. We introduce key aspects of the BrainScaleS-2 Operating System: experiment workflow, API layering, software design, and platform operation. We present use cases to discuss and derive requirements for the software and showcase the implementation. The focus lies on novel system and software features such as multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training, applications for the embedded processors, the non-spiking operation mode, interactive platform access, and sustainable hardware/software co-development. Finally, we discuss further developments in terms of hardware scale-up, system usability, and efficiency.

2.
Front Neurosci ; 13: 1201, 2019.
Article in English | MEDLINE | ID: mdl-31798400

ABSTRACT

The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.

3.
Front Neurosci ; 13: 260, 2019.
Article in English | MEDLINE | ID: mdl-30971881

ABSTRACT

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57 mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.

4.
Article in English | MEDLINE | ID: mdl-21477319

ABSTRACT

BACKGROUND: One major concern in the treatment of ACL lesions in children and adolescents with open physes is the risk of iatrogenic damage to the physes and a possibly resulting growth disturbance. PURPOSE: The primary purpose of this article is to describe our technique of a transphyseal ACL reconstruction using quadriceps tendon-bone autograft in children and adolescents with open growth plates. The secondary aim is to report our early results in terms of postoperative growth disturbances which are considered to be a major concern in this challenging group of patients. It was our hypothesis that with our proposed technique no significant growth disturbances would occur. METHODS: From January 1997 to December 2007 49 consecutive children and adolescents with open growth plates were treated for a torn ACL using the aforementioned surgical technique. The patients (28 males and 21 females) with a median age at surgery of 13 (range 8-15) years were retrospectively evaluated. Outcome measures were follow-up radiographs (weight-bearing long leg radiographs of the injured and uninjured knee, anteroposterior and lateral views, a tangential view of the patella and a tunnel view of the injured knee) and follow-up notes (6 weeks, 3, 6, 12 months and until closing of physes) for occurrence of any tibial and/or femoral growth changes. RESULTS: All of the 49 patients had a sufficient clinical and radiological follow-up (minimum 5 years, rate 100%). 48 cases did not show any clinical and radiological growth disturbance. One case of growth disturbance in a 10.5 years old girl was observed. She developed a progressive valgus-flexion deformity which was attributed to a malplacement of the autograft bone block within the femoral posterolateral epiphyseal plate leading to an early localized growth stop. None of the patients were reoperated due to ACL graft failure. Five of the patients underwent revision ACL surgery due to another adequate sports trauma after the growth-stop. The tibial fixation screw had to be removed under local anaesthesia in 10 patients. CONCLUSIONS: The described ACL reconstruction technique represents a promising alternative to previously described procedures in the treatment of children and adolescents with open growth plates. Using quadriceps tendon future graft availability is not compromised, as the most frequently used autograft-source, ipsilateral hamstring tendons, remains untouched.

5.
Cases J ; 2: 9357, 2009 Dec 19.
Article in English | MEDLINE | ID: mdl-20062606

ABSTRACT

INTRODUCTION: To the best of our knowledge there is no other report of an elderly patient who was surgically treated for a patellar fracture with tension band wiring and who subsequently suffered from an avulsion fracture of the tibial tuberosity. The combination of a patellar fracture and avulsion of the patellar ligament has only been described as complication after bone-patellar tendon-bone anterior cruciate ligament reconstructions. However, due to demographic changes and more elderly patients treated this injury may become more frequent in future. CASE PRESENTATION: We present the case of an 81 year old female who sustained an oblique patellar fracture after a direct contact injury of the left knee when falling on ice. Consequently the patellar fracture was openly reduced and stabilized with tension band wiring. The follow-up was uneventful till three months after surgery when the patient noticed a spontaneous avulsion fracture of the tibial tuberosity (Ogden type 3). The tibial tuberosity fragment was reattached with two non-resorbable sutures looped around two modified AO cortical 3.5 mm long neck screws. Intraoperatively multiple bone cysts were seen. Biopsies were not taken to prevent further fragmentation of the tibial tuberosity. The patient was followed up with anteroposterior and lateral full weight bearing radiographs and clinical assessment at 6, 12 weeks and 6 months after surgery. Recovery was completely pain free with full satisfaction. CONCLUSION: In conclusion in elderly patients with a patella fracture a possible associated but not obvious fracture of the tibial tuberosity should be ruled out and the postoperative rehabilitation protocol after tension band wiring of the patella might have to be individually adjusted to bone quality and course of the fracture.

6.
Knee Surg Sports Traumatol Arthrosc ; 16(10): 952-6, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18712356

ABSTRACT

We present a case of a soccer player who sustained a lateral ankle fracture and the associated proximal anterolateral tibiofibular joint instability (Maisonneuve injury) was overlooked. After a non-contact injury the (incomplete) diagnosis of a lateral malleolar fracture (type Weber B, AO 44-B1) was made and the patient was surgically treated with open reduction and internal fixation including a distal syndesmosis screw. After removal of the syndesmosis screw (six weeks after surgery) the patient suffered from activity-related pain around the fibular head. After thorough clinical and radiologic examination, temporary screw transfixation of the fibular head and capsular repair under meticulous fluoroscopic control of fibular rotation helped to restore patient's sport activity level. This case report emphasizes the importance of precise clinical examination for detection of a proximal tibiofibular joint instability. Restoration of a well functioning and stable proximal tibiofibular joint may be difficult to achieve in previously operated and missed instabilities.


Subject(s)
Ankle Injuries/complications , Athletic Injuries/complications , Athletic Injuries/surgery , Knee Dislocation/complications , Adult , Ankle Injuries/surgery , Bone Screws , Fibula/surgery , Fracture Fixation, Internal , Humans , Joint Instability/diagnosis , Knee Dislocation/diagnosis , Knee Dislocation/surgery , Male , Soccer , Tibia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...