Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neuropathol ; 42(3): 112-121, 2023.
Article in English | MEDLINE | ID: mdl-36999511

ABSTRACT

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Subject(s)
Biomarkers, Tumor , Chromosome Deletion , Genetic Testing , Histones , Mutation , Oncogene Proteins, Fusion , Promoter Regions, Genetic , Telomerase , Child , Humans , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Germany , Histones/genetics , Membrane Proteins/genetics , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics
2.
Front Cell Infect Microbiol ; 10: 577428, 2020.
Article in English | MEDLINE | ID: mdl-33117732

ABSTRACT

Tethering of viral genomes to host chromosomes has been recognized in a variety of DNA and RNA viruses. It can occur during both the productive cycle and latent infection and may impact viral genomes in manifold ways including their protection, localization, transcription, replication, integration, and segregation. Tethering is typically accomplished by dedicated viral proteins that simultaneously associate with both the viral genome and cellular chromatin via nucleic acid, histone and/or non-histone protein interactions. Some of the most prominent tethering proteins have been identified in DNA viruses establishing sustained latent infections, including members of the papillomaviruses and herpesviruses. Herpesvirus particles have linear genomes that circularize in infected cell nuclei and usually persist as extrachromosomal episomes. In several γ-herpesviruses, tethering facilitates the nuclear retention and faithful segregation of viral episomes during cell division, thus contributing to persistence of these viruses in the absence of infectious particle production. However, it has not been studied whether the genomes of human Cytomegalovirus (hCMV), the prototypical ß-herpesvirus, are tethered to host chromosomes. Here we provide evidence by fluorescence in situ hybridization that hCMV genomes associate with the surface of human mitotic chromosomes following infection of both non-permissive myeloid and permissive fibroblast cells. This chromosome association occurs at lower frequency in the absence of the immediate-early 1 (IE1) proteins, which bind to histones and have been implicated in the maintenance of hCMV episomes. Our findings point to a mechanism of hCMV genome maintenance through mitosis and suggest a supporting but non-essential role of IE1 in this process.


Subject(s)
Cytomegalovirus , Immediate-Early Proteins , Chromosomes , Cytomegalovirus/genetics , Humans , Immediate-Early Proteins/genetics , In Situ Hybridization, Fluorescence , Viral Proteins
3.
Immunobiology ; 221(11): 1259-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27377709

ABSTRACT

Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses.


Subject(s)
Adenosine Triphosphate/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Receptors, Purinergic P2X7/metabolism , Toll-Like Receptors/metabolism , beta-Defensins/metabolism , Biomarkers , Cell Line , Cytokines/genetics , Gene Expression , Humans , Immunity, Innate , Immunomodulation , Ligands , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Toll-Like Receptors/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...