Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(5): 2267-2281, 2024 May.
Article in English | MEDLINE | ID: mdl-36827249

ABSTRACT

BACKGROUND: Cabbage stem flea beetle (CSFB; Psylliodes chrysocephala L.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the absence of permitted and effective insecticides. Understanding the meteorological and management factors affecting their population dynamics has become critical to the development of pest management strategies. RESULTS: The spatio-temporal changes in CSFB larval populations were assessed both in autumn and spring, in the UK from 2003 to 2017 (a period encompassing pre-and post-neonicotinoid insecticide restriction). After the neonicotinoid ban in 2013, the number of larvae both in autumn and spring increased 10-fold in the UK. When neonicotinoids were available, later sown crops contained fewer larvae than early sown crops, and bigger fields had fewer larvae than smaller fields, whereas after the ban, bigger fields tended to have more larvae than smaller fields. Wet and mild/hot Septembers were related with higher numbers of larvae when neonicotinoids were available and with lower larval numbers after the neonicotinoid ban. Low temperatures in December and January combined with high rainfall were related with high numbers of larvae in spring both before and after the neonicotinoid ban. CONCLUSION: This study will help to produce decision support systems that allow future predictions of regional CSFB population changes and will help growers and consultants to adjust their management methods to reduce the risk of high infestations. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassica napus , Brassica , Coleoptera , Insecticides , Siphonaptera , Animals , Larva , Insecticides/pharmacology , Neonicotinoids/pharmacology , United Kingdom
2.
Pest Manag Sci ; 80(5): 2294-2305, 2024 May.
Article in English | MEDLINE | ID: mdl-37035871

ABSTRACT

BACKGROUND: The pollen beetle (Brassicogethes aeneus) causes significant yield loss in oilseed rape (Brassica napus). Predicting population changes remains a scientific challenge, especially since its phenology and abundance varies dramatically over space and time. We used generalized additive models to investigate the long-term trends in pollen beetle annual, seasonal and monthly counts from Rothamsted 12.2 m suction-traps. We hypothesised that the beetle's abundance is positively related to the area of oilseed rape at a national and regional level. We used random forest models to investigate the inter-generational relationship within years. RESULTS: Although Brassicogethes aeneus annual counts and area of oilseed rape grown in the UK both increased by 162% and 113%, respectively, over the time period studied, they were not significantly related. The size of the immigrating pollen beetle population (up to 1 June) can be explained both by the size of the population in the previous summer and prevailing winter temperatures, indicating a positive feedback mechanism. CONCLUSION: Currently, pollen beetle numbers continue to increase in the UK, meaning that control issues may persist. However the relationship between counts in spring, during the susceptible phase of the crop, and counts in the previous summer indicates that it may be possible to forecast the counts of the spring migration of Brassicogethes aeneus a few months in advance using suction-trap samples, which could aid decisions on control options. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassica napus , Coleoptera , Animals , Pest Control , Seasons , United Kingdom
3.
Glob Change Biol Bioenergy ; 14(3): 267-286, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35909990

ABSTRACT

Oilseed rape (OSR) is the second largest source of vegetable oil globally and the most important biofuel feedstock in the European Union (EU) but the production of this important crop is threatened by a small insect, Psylliodes chrysocephala - the cabbage stem flea beetle (CSFB). The EU ban on use of neonicotinoid seed treatments and resistance of CSFB to pyrethroid insecticides have left farmers with limited control options resulting in drastic reductions in production. Integrated pest management (IPM) may offer a solution. We review the lifecycle of CSFB and the current options available, or in the research pipeline, for the eight IPM principles of the EU Sustainable Use of Pesticides Directive (Directive-2009/128/EC). A full IPM strategy for CSFB barely exists. Although there are a range of preventative measures, these require scientific validation; critically, resistant/tolerant OSR cultivars are not yet available. Existing monitoring methods are time-consuming and there are no commercial models to enable decision support based on predictions of migration timing or population size. Available thresholds are not based on physiological tolerances of the plant making it hard to adapt them to changing market prices for the crop and costs of control. Non-synthetic alternatives tested and registered for use against CSFB are lacking, making resistance management impossible. CSFB control is therefore dependent upon conservation biocontrol. Natural enemies of CSFB are present, but quantification of their effects is needed and habitat management strategies to exploit their potential. Although some EU countries have local initiatives to reduce insecticide use and encourage use of 'greener' alternatives, there is no formal process for ranking these and little information available to help farmers make choices. We summarize the main knowledge gaps and future research needed to improve measures for CSFB control and to facilitate development of a full IPM strategy for this pest and sustainable oilseeds production.

4.
Pest Manag Sci ; 73(6): 1076-1082, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28195419

ABSTRACT

BACKGROUND: The field ecology of the pollen beetle Meligethes aeneus and its damaging effects on oilseed rape crops are well understood. However, the flight behaviour of M. aeneus, in particular the drivers for migratory movements across the landscape, is not well studied. We combined three established methodologies - suction traps, vertical-looking radar and high-altitude aerial netting - to demonstrate that M. aeneus flies at a range of altitudes at different points during its active season. RESULTS: By linking evidence of high-altitude mass migration with immigration of pollen beetles into oilseed rape fields, we were able to 'ground-truth' the results to characterise the seasonal movements of this pest across the landscape. CONCLUSION: We demonstrate that this novel combination of methodologies can advance our understanding of the population movements of pollen beetles and could provide an opportunity to develop predictive models to estimate the severity and timing of pest outbreaks. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animal Migration , Coleoptera/physiology , Flight, Animal , Altitude , Animals , Brassica napus , Crops, Agricultural , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...