Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 349: 141025, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142885

ABSTRACT

Plastic materials provide numerous benefits. However, properties such as durability and resistance to degradation that make plastic attractive for variable applications likewise foster accumulation in the environment. Fragmentation of plastics leads to the formation of potentially hazardous microplastic, of which a considerable amount derives from polystyrene. Here, we investigated the biodegradation of polystyrene by the tropical sooty mold fungus Capnodium coffeae in different experimental setups. Growth of C. coffeae was stimulated significantly when cultured in presence of plastic polymers rather than in its absence. Stable isotope tracing using 13C-enriched polystyrene particles combined with cavity ring-down spectroscopy showed that the fungus mineralized polystyrene traces. However, phospholipid fatty acid stable isotope probing indicated only marginal assimilation of polystyrene-13C by C. coffeae in liquid cultures. NMR spectroscopic analysis of residual styrene contents prior to and after incubation revealed negligible changes in concentration. Thus, this study suggests a plastiphilic life style of C. coffeae despite minor usage of plastic as a carbon source and the general capability of sooty mold fungi to stimulate polystyrene mineralization, and proposes new standards to identify and unambiguously demonstrate plastic degrading capabilities of microbes.


Subject(s)
Plastics , Polystyrenes , Polystyrenes/chemistry , Plastics/analysis , Microplastics , Biodegradation, Environmental , Fungi/metabolism , Isotopes/analysis
2.
Adv Sci (Weinh) ; 10(11): e2206616, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36793085

ABSTRACT

Passive radiative daytime cooling is an emerging technology contributing to carbon-neutral heat management. Optically engineered materials with distinct absorption and emission properties in the solar and mid-infrared range are at the heart of this technology. Owing to their low emissive power of about 100 W m-2 during daytime, substantial areas need to be covered with passive cooling materials or coatings to achieve a sizeable effect on global warming. Consequently, biocompatible materials are urgently needed to develop suitable coatings with no adverse environmental impact. It is shown how chitosan films with different thicknesses can be produced from slightly acidic aqueous solutions. The conversion to their insoluble form chitin in the solid state is demonstrated and the conversion is monitored with infrared (IR) and NMR spectroscopy. In combination with a reflective backing material, the films show below-ambient temperature cooling capabilities with a suitable emissivity in the mid-IR region and low solar absorption of 3.1-6.9%, depending on the film thickness. This work highlights the potential of chitosan and chitin as widely available biocompatible polymers for passive radiative cooling applications.

3.
RSC Adv ; 12(18): 10875-10885, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425044

ABSTRACT

Weathering of microplastics made of commodity plastics like polystyrene, polypropylene and polyethylene introduces polar polymer defects as a result of photooxidation and mechanical stress. Thus, hydrophobic microplastic particles gradually become hydrophilic, consisting of polar oligomers with a significant amount of oxygen-bearing functional groups. This turnover continuously changes interactions between microplastics and natural colloidal matter. To be able to develop a better understanding of this complex weathering process, quantification of the corresponding defect proportions is a first and essential step. Using polystyrene, 13C enriched at the α position to 23%, we demonstrate that 13C cross polarisation (CP) NMR spectroscopy allows for probing the typical alcohol, peroxo, keto and carboxyl defects. Even the discrimination between in- and end-chain ketones, carboxylic acids and esters as well as ketal functions was possible. Combined with multiCP excitation, defect proportions could be determined with excellent accuracy down to 0.1%. For materials with 13C in natural abundance, this accounts for a detection limit of roughly 1%. The best trade-off between measurement time and accuracy for the quantification of the defect intensities for multiCP excitation was obtained for CP block lengths shorter than 250 µs and total build-up times longer than 2 ms. Further measurement time reduction is possible by using multiCP excitation to calibrate intensities obtained from series of 13C CP MAS NMR spectra. As photooxidation is an important degradation mechanism for microplastics in the environment, we expect these parameters to be transferable for probing defect proportions of weathered microplastics in general.

4.
Sci Total Environ ; 826: 154035, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35217061

ABSTRACT

When plastics enter the environment, they are exposed to abiotic and biotic impacts, resulting in degradation and the formation of micro- and nanoplastic. Microplastic is ubiquitous in every environmental compartment. Nevertheless, the underlying degradation processes are not yet fully understood. Here, we studied the abiotic degradation of commonly used semi-crystalline, low-density polyethylene (LDPE) in a long-term accelerated weathering experiment combining several macro- and microscopic methods. Based on our observations, the degradation of LDPE proceeds in three stages. Initially, LDPE objects are prone to abrasion, followed by a period of surface cracking. A large number of secondary particles with a high degree of crystallinity are formed, with sizes down to the nanometer scale. These particles consist of highly polar oligomers leading to agglomeration in the final stage. We therefore suppose that weathered microplastic and nanoplastic particles will attach to colloidal environmental matter. This offers an explanation for the absence of free nanoplastic particles in natural samples.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Polyethylene , Water Pollutants, Chemical/analysis , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...