Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertens Res ; 47(7): 1897-1907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664509

ABSTRACT

Artificial light at night (ALAN) disrupts 24-h variability of blood pressure, but the molecular mechanisms underlying these effects are unknown. Therefore, we analysed the daily variability of pulse pressure, the maximum value of acceleration rate of aortic pressure (dP/dt(max)) measured by telemetry and protein expression in the thoracic aorta of normotensive male rats exposed to ALAN (1-2 lx) for 3 weeks. Daily, 24-h variability of pulse pressure and dP/dt(max) was observed during a regular light/dark regimen with higher values during the dark compared to the light phase of the day. ALAN suppressed 24-h variability and enhanced ultradian (<12-h) periods of pulse pressure and dP/dt(max) in duration-dependent manners. From beat-to-beat blood pressure variability, ALAN decreased low-frequency bands (a sympathetic marker) and had minimal effects on high-frequency bands. At the molecular level, ALAN decreased angiotensin II receptor type 1 expression and reduced 24-h variability. ALAN caused the appearance of 12-h oscillations in transforming growth factor ß1 and fibulin 4. Expression of sarco/endoplasmic reticulum Ca2+-ATPase type 2 was increased in the middle of the light and dark phase of the day, and ALAN did not affect its daily and 12-h variability. In conclusion, ALAN suppressed 24-h variability of pulse pressure and dP/dt(max), decreased the power of low-frequency bands and differentially affected the expression of specific proteins in the rat thoracic aorta. Suppressed 24-h oscillations by ALAN underline the pulsatility of individual endocrine axes with different periods, disrupting the cardiovascular control of central blood pressure.


Subject(s)
Aorta, Thoracic , Blood Pressure , Circadian Rhythm , Animals , Male , Aorta, Thoracic/metabolism , Blood Pressure/physiology , Rats , Circadian Rhythm/physiology , Transforming Growth Factor beta1/metabolism , Receptor, Angiotensin, Type 1/metabolism , Light , Extracellular Matrix Proteins/metabolism , Rats, Sprague-Dawley , Calcium-Binding Proteins/metabolism
2.
Pflugers Arch ; 476(3): 295-306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177874

ABSTRACT

Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.


Subject(s)
Cardiovascular System , Light , Humans , Rats , Animals , Light Pollution , Blood Pressure , Heart Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...