Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 39(2): 311-325, 2018 01.
Article in English | MEDLINE | ID: mdl-28949023

ABSTRACT

Over the last decade, capillary electrophoresis gained tremendous importance, because it became an indispensible tool for the quality control of biologics, e.g. therapeutic antibodies. Consequently, there has been a continuous development within the CE market. Microchip techniques have been established in the last years. Further trends are complete solutions for specific applications by the usage of reagent kits. Step by step instructions and facilitated handling of the instruments are becoming more common. This work focuses on the sized-based protein analysis with CE-SDS. The instruments CE 7100 by Agilent Technologies, LabChip® GXII Touch HT by PerkinElmer, Maurice S. by Protein Simple and PrinCE NextI870 by Prince Technologies have been evaluated, mainly analyzing protein mixtures of different molecular weights in long series. Published data of the PA 800 plus by SCIEX are also included in the tabled results. Precision, reliability, flexibility, and speed have been identified as the most important performance parameters, others such as resolution, sensitivity, linearity, ease of use and sustainability have also been considered. All tested instruments have shown an excellent performance. Depending on application and necessities, each user can find the most appropriate one.


Subject(s)
Electrophoresis, Capillary , Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Electrophoresis, Capillary/standards
2.
J Plant Physiol ; 216: 219-228, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28756342

ABSTRACT

Dehydrins are specialized proteins which are related to environmental stress tolerance in plants. The proteins can bind different metal ions and have versatile other functions such as reduction of reactive oxygen species and acting as transcription factor. The structure determination of proteins from this family is challenging, since they have a high number of disordered structure elements. Consequently, to determine the functionality of these proteins on a molecular basis a computed model is helpful. This work focuses on a model for the Arabidopsis thaliana dehydrin AtHIRD11. To develop a model which reflects experimental data from literature and own binding data from affinity capillary electrophoresis experiments, a more rigid state of this protein was chosen. The Cu2+-complex of this protein was formed and evaluated. The model explains some of the properties of the complexes. Possible Cu2+-bindings site were found and the change of conformations were investigated via molecular dynamics simulation. The AtHIRD11-Cu2+-complex is a first approach towards a complex model for a structural versatile protein, which is already sufficient to explain binding data and possible structure elements.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Computer Simulation , Electrophoresis, Capillary/methods , Metals/metabolism , Plant Proteins/metabolism , Ions , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...