Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Voice ; 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35504794

ABSTRACT

BACKGROUND/OBJECTIVES: While voice-related therapeutic interventions are often researched preclinically in the porcine model, there are no well-established methods to induce porcine glottic phonation. Described approaches, such as training animals to phonate for positive reinforcement are time-consuming and plagued by inherent variability in the type of phonation produced and contamination of background noise. Thus, a reliable method of assessing glottic phonation in the porcine model is needed. METHODS: In this study, we have created a novel pulley-based apparatus with harness for "pig-lifting" with surrounding acoustic insulation and high-directional microphone with digital recorder for recording phonation. Praat and Matlab were used to analyze all porcine vocalizations for fundamental frequency (F0), intensity, duration of phonation and cepstral peak prominence (CPP). Glottic phonation was detected using F0 (≥2000 hz), duration (≥3 seconds) and researcher perceptual judgment. Partial-glottic phonations were also analyzed. Reliability between researcher judgment and acoustic measures for glottic phonation detection was high. RESULTS: Acoustic analysis demonstrated that glottic and partial-glottic phonation was consistently elicited, with no formal training of the minipigs required. Glottic vocalizations increased with multiple lifts. Glottic phonation continued to be elicited after multiple days but became less frequent. Glottic and partial-glottic phonations had similar CPP values over the 6 experimental days. CONCLUSION: Our cost-effective, reliable method of inducing and recording glottic phonation in the porcine model may provide a cost effective, preclinical tool in voice research.

2.
J Acoust Soc Am ; 146(5): 3710, 2019 11.
Article in English | MEDLINE | ID: mdl-31795699

ABSTRACT

The chinchilla animal model for noise-induced hearing loss has an extensive history spanning more than 50 years. Many behavioral, anatomical, and physiological characteristics of the chinchilla make it a valuable animal model for hearing science. These include similarities with human hearing frequency and intensity sensitivity, the ability to be trained behaviorally with acoustic stimuli relevant to human hearing, a docile nature that allows many physiological measures to be made in an awake state, physiological robustness that allows for data to be collected from all levels of the auditory system, and the ability to model various types of conductive and sensorineural hearing losses that mimic pathologies observed in humans. Given these attributes, chinchillas have been used repeatedly to study anatomical, physiological, and behavioral effects of continuous and impulse noise exposures that produce either temporary or permanent threshold shifts. Based on the mechanistic insights from noise-exposure studies, chinchillas have also been used in pre-clinical drug studies for the prevention and rescue of noise-induced hearing loss. This review paper highlights the role of the chinchilla model in hearing science, its important contributions, and its advantages and limitations.


Subject(s)
Chinchilla/physiology , Disease Models, Animal , Hearing Loss, Noise-Induced/physiopathology , Animals , Behavior, Animal , Hearing , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/pathology , Humans , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...