Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Assist Technol ; 35(2): 180-192, 2023 03 04.
Article in English | MEDLINE | ID: mdl-34871532

ABSTRACT

This paper aims to evaluate and compare the driving performances achieved with a power wheelchair using a standard joystick versus a novel gaze-based technology. The gaze-based interface, called RoboEYE, involves a novel paradigm of computer interaction that handles the receipt of information from an eye tracker, using it as a continuous input for wheelchair navigation. A pool of 36 subjects has tested both technologies in a circuit designed considering the Wheelchair Skill Test. The experimental analysis involved evaluations of specific metrics of motion and the submission of questionnaires to collect required information about perceived feelings and mental workload. The joystick proved to be the best driving interface. It turned out to be more accurate and efficient than the gaze-based solution. However, the latter achieved only small differences in driving kinematics. These differences can be considered negligible from an operational point of view, offering a driving experience similar to that achievable with the joystick. Testers reported no particular stress, fatigue, or frustration when switching from one interface to another. These elements suggest that the proposed gaze-based solution is an appropriate alternative for a technology transition driven by a pathological change in the user's condition.


Subject(s)
User-Computer Interface , Wheelchairs , Humans , Biomechanical Phenomena
2.
Sensors (Basel) ; 20(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668739

ABSTRACT

This paper presents the validation of a marker-less motion capture system used to evaluate the upper limb stress of subjects using exoskeletons for locomotion. The system fuses the human skeletonization provided by commercial 3D cameras with forces exchanged by the user to the ground through upper limbs utilizing instrumented crutches. The aim is to provide a low cost, accurate, and reliable technology useful to provide the trainer a quantitative evaluation of the impact of assisted gait on the subject without the need to use an instrumented gait lab. The reaction forces at the upper limbs' joints are measured to provide a validation focused on clinically relevant quantities for this application. The system was used simultaneously with a reference motion capture system inside a clinical gait analysis lab. An expert user performed 20 walking tests using instrumented crutches and force platforms inside the observed volume. The mechanical model was applied to data from the system and the reference motion capture, and numerical simulations were performed to assess the internal joint reaction of the subject's upper limbs. A comparison between the two results shows a root mean square error of less than 2% of the subject's body weight.


Subject(s)
Crutches , Exoskeleton Device , Joints/physiology , Upper Extremity/physiology , Biomechanical Phenomena , Gait , Humans , Walking
3.
Sensors (Basel) ; 19(4)2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30791532

ABSTRACT

The paper proposes an improved method for calculating the position of a movable tag whose distance to a (redundant) set of fixed beacons is measured by some suitable physical principle (typically ultra wide band or ultrasound propagation). The method is based on the multilateration technique, where the contribution of each individual beacon is weighed on the basis of a recurring, self-supported calibration of the measurement repeatability of each beacon at a given distance range. The work outlines the method and its implementation, and shows the improvement in measurement quality with respect to the results of a commercial Ultra-Wide-Band (UWB) system when tested on the same set of raw beacon-to-tag distances. Two versions of the algorithm are proposed: one-dimensional, or isotropic, and 3D. With respect to the standard approach, the isotropic solution managed to reduce the maximum localization error by around 25%, with a maximum error of 0.60 m, while the 3D version manages to improve even further the localization accuracy, with a maximum error of 0.45 m.

4.
Entropy (Basel) ; 21(3)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-33266990

ABSTRACT

In this study, an analysis of brain, cardiovascular and respiratory dynamics was conducted combining information-theoretic measures with the Network Physiology paradigm during different levels of mental stress. Starting from low invasive recordings of electroencephalographic, electrocardiographic, respiratory, and blood volume pulse signals, the dynamical activity of seven physiological systems was probed with one-second time resolution measuring the time series of the δ , θ , α and ß brain wave amplitudes, the cardiac period (RR interval), the respiratory amplitude, and the duration of blood pressure wave propagation (pulse arrival time, PAT). Synchronous 5-min windows of these time series, obtained from 18 subjects during resting wakefulness (REST), mental stress induced by mental arithmetic (MA) and sustained attention induced by serious game (SG), were taken to describe the dynamics of the nodes composing the observed physiological network. Network activity and connectivity were then assessed in the framework of information dynamics computing the new information generated by each node, the information dynamically stored in it, and the information transferred to it from the other network nodes. Moreover, the network topology was investigated using directed measures of conditional information transfer and assessing their statistical significance. We found that all network nodes dynamically produce and store significant amounts of information, with the new information being prevalent in the brain systems and the information storage being prevalent in the peripheral systems. The transition from REST to MA was associated with an increase of the new information produced by the respiratory signal time series (RESP), and that from MA to SG with a decrease of the new information produced by PAT. Each network node received a significant amount of information from the other nodes, with the highest amount transferred to RR and the lowest transferred to δ , θ , α and ß . The topology of the physiological network underlying such information transfer was node- and state-dependent, with the peripheral subnetwork showing interactions from RR to PAT and between RESP and RR, PAT consistently across states, the brain subnetwork resulting more connected during MA, and the subnetwork of brain-peripheral interactions involving different brain rhythms in the three states and resulting primarily activated during MA. These results have both physiological relevance as regards the interpretation of central and autonomic effects on cardiovascular and respiratory variability, and practical relevance as regards the identification of features useful for the automatic distinction of different mental states.

SELECTION OF CITATIONS
SEARCH DETAIL
...