Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 375(2105)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-28923995

ABSTRACT

Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

2.
Nature ; 511(7509): 326-9, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25030169

ABSTRACT

The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

3.
Science ; 324(5926): 486-8, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19299586

ABSTRACT

Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

4.
Science ; 303(5657): 499-503, 2004 Jan 23.
Article in English | MEDLINE | ID: mdl-14739452

ABSTRACT

We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

5.
Nature ; 427(6970): 129-31, 2004 Jan 08.
Article in English | MEDLINE | ID: mdl-14712269

ABSTRACT

The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib. The spectral and photometric peculiarities were best explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion, producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...