Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714690

ABSTRACT

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Subject(s)
Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
2.
Blood ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728430

ABSTRACT

Acquisition of a hyperdiploid (HY) karyotype or immunoglobulin heavy chain (IGH) translocations are considered key initiating events in multiple myeloma (MM). To explore if other genomic events can precede these events, we analyzed whole-genome sequencing (WGS) data from 1173 MM samples. Integrating molecular time and structural variants (SV) within early chromosomal duplications, we indeed identified pre-gain deletions in 9.4% of HY patients without IGH translocations, challenging HY as the earliest somatic event. Remarkably, these deletions affected tumor suppressor genes (TSG) and/or oncogenes in 2.4% of HY patients without IGH translocations, supporting their role in MM pathogenesis. Furthermore, our study points to post-gain deletions as novel driver mechanisms in MM. Using multi-omics approaches to investigate their biological impact, we found associations with poor clinical outcome in newly diagnosed patients and profound effects on both oncogene and TSG activity, despite the diploid gene status. Overall, this study provides novel insights into the temporal dynamics of genomic alterations in MM.

3.
Clin Cancer Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652812

ABSTRACT

PURPOSE: Early intervention for High-Risk Smoldering Multiple Myeloma (HR-SMM) achieves deep and prolonged responses. It is unclear if beneficial outcomes are due to treatment of less complex, susceptible disease or inaccuracy in clinical definition of cases entered. EXPERIMENTAL DESIGN: Here, we interrogated whole genome and whole exome sequencing for 54 patients across two HR-SMM interventional studies (NCT01572480, NCT02279394). RESULTS: We reveal that the genomic landscape of treated HR-SMM is generally simple as compared to Newly Diagnosed (ND)MM counterparts with less inactivation of tumor suppressor genes, RAS pathway mutations, MYC disruption, and APOBEC contribution. The absence of these events parallels that of indolent precursor conditions, possibly explaining overall excellent outcomes. However, some patients harboring genomic complexity fail to sustain response and experience resistant, progressive disease. Overall, clinical risk scores do not effectively discriminate between genomically indolent and aggressive disease. CONCLUSIONS: Genomic profiling can contextualize the advantage of early intervention in SMM and guide personalization of therapy.

4.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38441243

ABSTRACT

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Subject(s)
Clinical Trials as Topic , Multiple Myeloma , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Humans , Clinical Trials as Topic/methods , Research Design , Quality of Life
5.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517960

ABSTRACT

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Animals , Mice , Medulloblastoma/genetics , Transposases/genetics , Transposases/metabolism , Hedgehog Proteins/metabolism , Transcription Factors/genetics , Mutagenesis , Cerebellar Neoplasms/genetics
6.
Hematol Oncol Clin North Am ; 38(2): 267-279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199896

ABSTRACT

Multiple myeloma is a malignancy of bone-marrow-localized, isotype-switched plasma cells that secrete a monoclonal immunoglobulin and cause hyperCalcemia, Anemia, Renal failure, and lytic Bone disease. It is preceded, often for decades, by a relatively stable monoclonal gammopathy lacking these clinical and malignant features. Both conditions are characterized by the presence of types of immunoglobulin heavy gene translocations that dysregulate a cyclin D family gene on 11q13 (CCND1), 6p21 (CCND3), or 12q11 (CCND2), a maf family gene on 16q23 (MAF), 20q11 (MAFB), or 8q24 (MAFA), or NSD2/FGFR3 on 4p16, or the presence of hyperdiploidy. Subsequent loss of function of tumor suppressor genes and mutations activating MYC, RAS, NFkB, and cell cycle pathways are associated with the progression to malignant disease.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Translocation, Genetic , Gene Rearrangement , Mutation , Monoclonal Gammopathy of Undetermined Significance/genetics , Immunoglobulins/genetics
7.
Blood Cancer Discov ; 5(2): 90-94, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38175152

ABSTRACT

SUMMARY: Immune-related toxicities including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are common side effects of bispecific antibody and chimeric antigen receptor (CAR) T-cell therapies of hematologic malignancies. As anti-inflammatory therapy (the standard of care) is variably effective in mitigating these toxicities after onset, here we discuss emerging evidence for shifting the strategy from mitigation to prevention.


Subject(s)
Antibodies, Bispecific , Hematologic Neoplasms , Neoplasms , Humans , Neoplasms/drug therapy , Hematologic Neoplasms/therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , T-Lymphocytes
8.
J Clin Oncol ; 42(11): 1229-1240, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38194610

ABSTRACT

PURPOSE: Outcomes for patients with newly diagnosed multiple myeloma (NDMM) are heterogenous, with overall survival (OS) ranging from months to over 10 years. METHODS: To decipher and predict the molecular and clinical heterogeneity of NDMM, we assembled a series of 1,933 patients with available clinical, genomic, and therapeutic data. RESULTS: Leveraging a comprehensive catalog of genomic drivers, we identified 12 groups, expanding on previous gene expression-based molecular classifications. To build a model predicting individualized risk in NDMM (IRMMa), we integrated clinical, genomic, and treatment variables. To correct for time-dependent variables, including high-dose melphalan followed by autologous stem-cell transplantation (HDM-ASCT), and maintenance therapy, a multi-state model was designed. The IRMMa model accuracy was significantly higher than all comparator prognostic models, with a c-index for OS of 0.726, compared with International Staging System (ISS; 0.61), revised-ISS (0.572), and R2-ISS (0.625). Integral to model accuracy was 20 genomic features, including 1q21 gain/amp, del 1p, TP53 loss, NSD2 translocations, APOBEC mutational signatures, and copy-number signatures (reflecting the complex structural variant chromothripsis). IRMMa accuracy and superiority compared with other prognostic models were validated on 256 patients enrolled in the GMMG-HD6 (ClinicalTrials.gov identifier: NCT02495922) clinical trial. Individualized patient risks were significantly affected across the 12 genomic groups by different treatment strategies (ie, treatment variance), which was used to identify patients for whom HDM-ASCT is particularly effective versus patients for whom the impact is limited. CONCLUSION: Integrating clinical, demographic, genomic, and therapeutic data, to our knowledge, we have developed the first individualized risk-prediction model enabling personally tailored therapeutic decisions for patients with NDMM.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Multiple Myeloma/diagnosis , Prognosis , Melphalan , Hematopoietic Stem Cell Transplantation/adverse effects , Genomics , Transplantation, Autologous , Retrospective Studies
9.
Clin Cancer Res ; 30(3): 575-585, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37939148

ABSTRACT

PURPOSE: Whole-genome sequencing (WGS) of patients with newly diagnosed multiple myeloma (NDMM) has shown recurrent structural variant (SV) involvement in distinct regions of the genome (i.e., hotspots) and causing recurrent copy-number alterations. Together with canonical immunoglobulin translocations, these SVs are recognized as "recurrent SVs." More than half of SVs were not involved in recurrent events. The significance of these "rare SVs" has not been previously examined. EXPERIMENTAL DESIGN: In this study, we utilize 752 WGS and 591 RNA sequencing data from patients with NDMM to determine the role of rare SVs in myeloma pathogenesis. RESULTS: Ninety-four percent of patients harbored at least one rare SV event. Rare SVs showed an SV class-specific enrichment within genes and superenhancers associated with outlier gene expression. Furthermore, known myeloma driver genes recurrently impacted by point mutations were dysregulated by rare SVs. CONCLUSIONS: Overall, we demonstrate the association of rare SVs with aberrant gene expression supporting a potential driver role in myeloma pathogenesis.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Genome, Human , DNA Copy Number Variations , Whole Genome Sequencing , Translocation, Genetic
10.
medRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106151

ABSTRACT

Anti-CD38 antibody therapies have transformed multiple myeloma (MM) treatment. However, a large fraction of patients inevitably relapses. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676 ). Whole genome sequencing (WGS) before and after treatment pinpointed genomic drivers associated with early progression, including RPL5 loss and APOBEC mutagenesis. Flow cytometry on 202 blood samples, collected every three months until progression for 31 patients, revealed distinct immune changes significantly impacting clinical outcomes. Progressing patients exhibited significant depletion of CD38+ NK cells, persistence of T cell exhaustion, and reduced depletion of T-reg cells over time. These findings underscore the influence of immune composition and daratumumab-induced immune changes in promoting MM resistance. Integrating genomics and flow cytometry unveiled associations between adverse genomic features and immune patterns. Overall, this study sheds light on the intricate interplay between genomic complexity and the immune microenvironment driving resistance to Dara-Rd.

11.
EJHaem ; 4(4): 902-907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38024640

ABSTRACT

Understanding the tumor microenvironment and genomic landscape is crucial for better prediction of treatment outcomes and developing novel therapies in Hodgkin lymphoma (HL). Recent advancements in genomics have enabled researchers to gain deeper insights into the genomic characteristics of HL at both single-cell resolution and the whole genome level. The use of noninvasive methods such as liquid biopsies and formalin-fixed paraffin-embedded-based imaging techniques has expanded the possibilities of applying cutting-edge analyses to routine clinically available samples. Collaborative efforts between adult and pediatric group are imperative to translate novel findings into routine patient care.

12.
Nat Cancer ; 4(12): 1660-1674, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945755

ABSTRACT

Despite improving outcomes, 40% of patients with newly diagnosed multiple myeloma treated with regimens containing daratumumab, a CD38-targeted monoclonal antibody, progress prematurely. By integrating tumor whole-genome and microenvironment single-cell RNA sequencing from upfront phase 2 trials using carfilzomib, lenalidomide and dexamethasone with daratumumab ( NCT03290950 ), we show how distinct genomic drivers including high APOBEC mutational activity, IKZF3 and RPL5 deletions and 8q gain affect clinical outcomes. Furthermore, evaluation of paired bone marrow profiles, taken before and after eight cycles of carfilzomib, lenalidomide and dexamethasone with daratumumab, shows that numbers of natural killer cells before treatment, high T cell receptor diversity before treatment, the disappearance of sustained immune activation (that is, B cells and T cells) and monocyte expansion over time are all predictive of sustained minimal residual disease negativity. Overall, this study provides strong evidence of a complex interplay between tumor cells and the immune microenvironment that is predictive of clinical outcome and depth of treatment response in patients with newly diagnosed multiple myeloma treated with highly effective combinations containing anti-CD38 antibodies.


Subject(s)
Immunotherapy , Multiple Myeloma , Humans , Dexamethasone/therapeutic use , Genomics , Lenalidomide/therapeutic use , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Tumor Microenvironment/genetics
13.
Nat Commun ; 14(1): 5335, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660077

ABSTRACT

The role of the immune microenvironment in maintaining disease remission in patients with multiple myeloma (MM) is not well understood. In this study, we comprehensively profile the immune system in patients with newly diagnosed MM receiving continuous lenalidomide maintenance therapy with the aim of discovering correlates of long-term treatment response. Leveraging single-cell RNA sequencing and T cell receptor ß sequencing of the peripheral blood and CyTOF mass cytometry of the bone marrow, we longitudinally characterize the immune landscape in 23 patients before and one year after lenalidomide exposure. We compare patients achieving sustained minimal residual disease (MRD) negativity to patients who never achieved or were unable to maintain MRD negativity. We observe that the composition of the immune microenvironment in both the blood and the marrow varied substantially according to both MRD negative status and history of autologous stem cell transplant, supporting the hypothesis that the immune microenvironment influences the depth and duration of treatment response.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Lenalidomide , Immunophenotyping , Patients , Receptors, Antigen, T-Cell, alpha-beta , Tumor Microenvironment
14.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546905

ABSTRACT

Despite advancements in profiling multiple myeloma (MM) and its precursor conditions, there is limited information on mechanisms underlying disease progression. Clincal efforts designed to deconvolute such mechanisms are challenged by the long lead time between monoclonal gammopathy and its transformation to MM. MM mouse models represent an opportunity to overcome this temporal limitation. Here, we profile the genomic landscape of 118 genetically engineered Vk*MYC MM and reveal that it recapitulates the genomic heterogenenity and life history of human MM. We observed recurrent copy number alterations, structural variations, chromothripsis, driver mutations, APOBEC mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identified frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC expression, that drives the progression of monoclonal gammopathy to MM.

15.
Nat Med ; 29(9): 2295-2306, 2023 09.
Article in English | MEDLINE | ID: mdl-37653344

ABSTRACT

B cell maturation antigen (BCMA) target loss is considered to be a rare event that mediates multiple myeloma (MM) resistance to anti-BCMA chimeric antigen receptor T cell (CAR T) or bispecific T cell engager (TCE) therapies. Emerging data report that downregulation of G-protein-coupled receptor family C group 5 member D (GPRC5D) protein often occurs at relapse after anti-GPRC5D CAR T therapy. To examine the tumor-intrinsic factors that promote MM antigen escape, we performed combined bulk and single-cell whole-genome sequencing and copy number variation analysis of 30 patients treated with anti-BCMA and/or anti-GPRC5D CAR T/TCE therapy. In two cases, MM relapse post-TCE/CAR T therapy was driven by BCMA-negative clones harboring focal biallelic deletions at the TNFRSF17 locus at relapse or by selective expansion of pre-existing subclones with biallelic TNFRSF17 loss. In another five cases of relapse, newly detected, nontruncating, missense mutations or in-frame deletions in the extracellular domain of BCMA negated the efficacies of anti-BCMA TCE therapies, despite detectable surface BCMA protein expression. In the present study, we also report four cases of MM relapse with biallelic mutations of GPRC5D after anti-GPRC5D TCE therapy, including two cases with convergent evolution where multiple subclones lost GPRC5D through somatic events. Immunoselection of BCMA- or GPRC5D-negative or mutant clones is an important tumor-intrinsic driver of relapse post-targeted therapies. Mutational events on BCMA confer distinct sensitivities toward different anti-BCMA therapies, underscoring the importance of considering the tumor antigen landscape for optimal design and selection of targeted immunotherapies in MM.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Antigenic Drift and Shift , DNA Copy Number Variations , Neoplasm Recurrence, Local , Immunotherapy , Antibodies , Membrane Proteins
16.
Clin Cancer Res ; 29(19): 3901-3913, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37449980

ABSTRACT

PURPOSE: Chromosome 1 (chr1) copy-number abnormalities (CNA) and structural variants (SV) are frequent in newly diagnosed multiple myeloma (NDMM) and are associated with a heterogeneous impact on outcomes, the drivers of which are largely unknown. EXPERIMENTAL DESIGN: A multiomic approach comprising CRISPR, gene mapping of CNAs and SVs, methylation, expression, and mutational analysis was used to document the extent of chr1 molecular variants and their impact on pathway utilization. RESULTS: We identified two distinct groups of gain(1q): focal gains associated with limited gene-expression changes and a neutral prognosis, and whole-arm gains, which are associated with substantial gene-expression changes, complex genetics, and an adverse prognosis. CRISPR identified a number of dependencies on chr1 but only limited variants associated with acquired CNAs. We identified seven regions of deletion, nine of gain, three of chromothripsis (CT), and two of templated insertion (TI), which contain a number of potential drivers. An additional mechanism involving hypomethylation of genes at 1q may contribute to the aberrant gene expression of a number of genes. Expression changes associated with whole-arm gains were substantial and gene set enrichment analysis identified metabolic processes, apoptotic resistance, signaling via the MAPK pathway, and upregulation of transcription factors as being key drivers of the adverse prognosis associated with these variants. CONCLUSIONS: Multiple layers of genetic complexity impact the phenotype associated with CNAs on chr1 to generate its associated clinical phenotype. Whole-arm gains of 1q are the critically important prognostic group that deregulate multiple pathways, which may offer therapeutic vulnerabilities.

18.
Blood Cancer Discov ; 4(3): 208-227, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36723991

ABSTRACT

The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.


Subject(s)
Hodgkin Disease , Reed-Sternberg Cells , Humans , Reed-Sternberg Cells/pathology , Hodgkin Disease/genetics , Hodgkin Disease/pathology , Flow Cytometry , Evolution, Molecular
20.
Blood ; 141(19): 2359-2371, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36626250

ABSTRACT

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Subject(s)
Antineoplastic Agents , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasms, Second Primary , Humans , Melphalan , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplasms, Second Primary/chemically induced , Neoplasms, Second Primary/genetics , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...