Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 7(282): 282ra47, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25855493

ABSTRACT

Infiltration by macrophages represents a characteristic morphological hallmark in high-grade lymphatic malignancies such as Burkitt's lymphoma (BL). Although macrophages can, in principle, target neoplastic cells and mediate antibody-dependent cellular cytotoxicity (ADCC), tumor-associated macrophages (TAMs) regularly fail to exert direct cytotoxic functions. The underlying mechanisms responsible for this observation remain unclear. We demonstrate that inflammatory M1 macrophages kill proliferating high-grade B cell lymphoma cells by releasing the antimicrobial peptide cathelicidin in a vitamin D-dependent fashion. We show that cathelicidin directly induces cell death by targeting mitochondria of BL cells. In contrast, anti-inflammatory M2 macrophages and M2-like TAMs in BL exhibit an altered vitamin D metabolism, resulting in a reduced production of cathelicidin and consequently in inability to lyse BL cells. However, treatment of M2 macrophages with the bioactive form of vitamin D, 1,25D3, or a vitamin D receptor agonist effectively induces cathelicidin production and triggers tumoricidal activity against BL cells. Furthermore, rituximab-mediated cytotoxicity of vitamin D-treated M2 macrophages is cathelicidin-dependent. Finally, vitamin D treatment of 25-hydroxyvitamin D (25D)-deficient volunteers in vivo or primary TAMs in vitro improves rituximab-mediated ADCC against B cell lymphoma cells. These data indicate that activation of the vitamin D signaling pathway activates antitumor activity of TAMs and improves the efficacy of ADCC.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Lymphoma, B-Cell/pathology , Macrophages/metabolism , Macrophages/pathology , Vitamin D/analogs & derivatives , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Humans , Macrophages/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Vitamin D/pharmacology , Cathelicidins
2.
Int J Cancer ; 135(5): 1153-64, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24500882

ABSTRACT

Adoptive T cell therapy is an important additional treatment option for malignant diseases resistant to chemotherapy. Using a murine high-grade B cell lymphoma model, we have addressed the question whether the B cell differentiation antigen CD19 can act as rejection antigen. CD19(-/-) mice inoculated with CD19(+) B cell lymphoma cells showed higher survival rates than WT mice and were protected against additional tumor challenge. T cell depletion prior to tumor transfer completely abolished the protective response. By heterotypic vaccination of CD19(-/-) mice against murine CD19, survival after tumor challenge was significantly increased. To define protective epitopes within the CD19 molecule, T cells collected from mice that had survived the tumor transfer were analyzed for IFNγ secretion in response to CD19-derived peptides. The majority of mice exhibited a CD4(+) T cell response to CD19 peptide 27, which was the most dominant epitope after CD19 vaccination. A peptide 27-specific CD4(+) T cell line protected CD19(-/-) mice against challenge with CD19(+) lymphoma and also cured a significant proportion of WT mice from recurrent disease in a model of minimal residual disease after chemotherapy. In conclusion, our data highlight CD19-specific CD4(+) T cells for adoptive T cell therapy of B cell lymphomas.


Subject(s)
Antigens, CD19/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/therapy , Animals , Antigens, CD19/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocyte Depletion , Lymphoma, B-Cell/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Transplantation , Tumor Cells, Cultured
3.
PLoS One ; 7(7): e42021, 2012.
Article in English | MEDLINE | ID: mdl-22860051

ABSTRACT

BACKGROUND: A given tumor is usually dependent on the oncogene that is activated in the respective tumor entity. This phenomenon called oncogene addiction provides the rationale for attempts to target oncogene products in a therapeutic manner, be it by small molecules, by small interfering RNAs (siRNA) or by antigen-specific T cells. As the proto-oncogene product is required also for the function of normal cells, this raises the question whether there is a therapeutic window between the adverse effects of specific inhibitors or T cells to normal tissue that may limit their application, and their beneficial tumor-specific therapeutic action. To address this crucial question, suitable mouse strains need to be developed, that enable expression of the human proto-oncogene not only in tumor but also in normal cells. The aim of this work is to provide such a mouse strain for the human proto-oncogene product c-MYC. PRINCIPAL FINDINGS: We generated C57BL/6-derived embryonic stem cells that are transgenic for a humanized c-Myc gene and established a mouse strain (hc-Myc) that expresses human c-MYC instead of the murine ortholog. These transgenic animals harbor the humanized c-Myc gene integrated into the endogenous murine c-Myc locus. Despite the lack of the endogenous murine c-Myc gene, homozygous mice show a normal phenotype indicating that human c-MYC can replace its murine ortholog. CONCLUSIONS: The newly established hc-Myc mouse strain provides a model system to study in detail the adverse effects of therapies that target the human c-MYC protein. To mimic the clinical situation, hc-Myc mice may be cross-bred to mice that develop tumors due to overexpression of human c-MYC. With these double transgenic mice it will be possible to study simultaneously the therapeutic efficiency and adverse side effects of MYC-specific therapies in the same mouse.


Subject(s)
Genes, myc , Proto-Oncogene Proteins c-myc/genetics , Animals , Blotting, Southern , Embryonic Stem Cells , Flow Cytometry , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Polymerase Chain Reaction , Proto-Oncogene Mas
4.
EMBO J ; 30(8): 1621-33, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21427701

ABSTRACT

Grb2 is a ubiquitously expressed adaptor protein, which activates Ras and MAP kinases in growth factor receptor signalling, while in B-cell receptor (BCR) signalling this role is controversial. In B cell lines it was shown that Grb2 can inhibit BCR-induced Ca(2+) signalling. Nonetheless, the physiological role of Grb2 in primary B cells is still unknown. We generated a B-cell-specific Grb2-deficient mouse line, which had a severe reduction of mature follicular B cells in the periphery due to a differentiation block and decreased B-cell survival. Moreover, we found several changes in important signalling pathways: enhanced BCR-induced Ca(2+) signalling, alterations in mitogen-activated protein kinase activation patterns and strongly impaired Akt activation, the latter pointing towards a defect in PI3K signalling. Interestingly, B-cell-specific Grb2-deficient mice showed impaired IgG and B-cell memory responses, and impaired germinal centre formation. Thus, Grb2-dependent signalling pathways are crucial for lymphocyte differentiation processes, as well as for control of secondary humoral immune responses.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Calcium/metabolism , GRB2 Adaptor Protein/physiology , Immunologic Memory , Signal Transduction , Adoptive Transfer , Animals , B-Cell Activation Factor Receptor , B-Lymphocytes/immunology , Blotting, Western , Bone Marrow/metabolism , Cell Cycle , Cell Differentiation , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunization , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Phosphorylation , Proto-Oncogene Proteins c-akt
SELECTION OF CITATIONS
SEARCH DETAIL
...