Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Med Invest ; 67(1.2): 30-39, 2020.
Article in English | MEDLINE | ID: mdl-32378615

ABSTRACT

Statistical iterative reconstruction is expected to improve the image quality of computed tomography (CT). However, one of the challenges of iterative reconstruction is its large computational cost. The purpose of this review is to summarize a fast iterative reconstruction algorithm by optimizing reconstruction parameters. Megavolt projection data was acquired from a TomoTherapy system and reconstructed using in-house statistical iterative reconstruction algorithm. Total variation was used as the regularization term and the weight of the regularization term was determined by evaluating signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and visual assessment of spatial resolution using Gammex and Cheese phantoms. Gradient decent with an adaptive convergence parameter, ordered subset expectation maximization (OSEM), and CPU/GPU parallelization were applied in order to accelerate the present reconstruction algorithm. The SNR and CNR of the iterative reconstruction were several times better than that of filtered back projection (FBP). The GPU parallelization code combined with the OSEM algorithm reconstructed an image several hundred times faster than a CPU calculation. With 500 iterations, which provided good convergence, our method produced a 512 × 512 pixel image within a few seconds. The image quality of the present algorithm was much better than that of FBP for patient data. J. Med. Invest. 67 : 30-39, February, 2020.


Subject(s)
Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans
2.
Radiother Oncol ; 127(2): 332-338, 2018 May.
Article in English | MEDLINE | ID: mdl-29526492

ABSTRACT

PURPOSE: To validate a novel deformable image registration (DIR) method for online adaptation of planning organ-at-risk (OAR) delineations to match daily anatomy during hypo-fractionated RT of abdominal tumors. MATERIALS AND METHODS: For 20 liver cancer patients, planning OAR delineations were adapted to daily anatomy using the DIR on corresponding repeat CTs. The DIR's accuracy was evaluated for the entire cohort by comparing adapted and expert-drawn OAR delineations using geometric (Dice Similarity Coefficient (DSC), Modified Hausdorff Distance (MHD) and Mean Surface Error (MSE)) and dosimetric (Dmax and Dmean) measures. RESULTS: For all OARs, DIR achieved average DSC, MHD and MSE of 86%, 2.1 mm, and 1.7 mm, respectively, within 20 s for each repeat CT. Compared to the baseline (translations), the average improvements ranged from 2% (in heart) to 24% (in spinal cord) in DSC, and 25% (in heart) to 44% (in right kidney) in MHD and MSE. Furthermore, differences in dose statistics (Dmax, Dmean and D2%) using delineations from an expert and the proposed DIR were found to be statistically insignificant (p > 0.01). CONCLUSION: The validated DIR showed potential for online-adaptive radiotherapy of abdominal tumors as it achieved considerably high geometric and dosimetric correspondences with the expert-drawn OAR delineations, albeit in a fraction of time required by experts.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Organs at Risk/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Abdomen/anatomy & histology , Abdomen/diagnostic imaging , Abdominal Neoplasms/diagnostic imaging , Abdominal Neoplasms/radiotherapy , Aged , Algorithms , Dose Fractionation, Radiation , Female , Humans , Male , Middle Aged , Organs at Risk/anatomy & histology , Tomography, X-Ray Computed/methods
3.
Med Phys ; 45(4): 1329-1337, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29405307

ABSTRACT

PURPOSE: This study investigates the potential application of image-based motion tracking and real-time motion correction to a helical tomotherapy system. METHODS: A kV x-ray imaging system was added to a helical tomotherapy system, mounted 90 degrees offset from the MV treatment beam, and an optical camera system was mounted above the foot of the couch. This experimental system tracks target motion by acquiring an x-ray image every few seconds during gantry rotation. For respiratory (periodic) motion, software correlates internal target positions visible in the x-ray images with marker positions detected continuously by the camera, and generates an internal-external correlation model to continuously determine the target position in three-dimensions (3D). Motion correction is performed by continuously updating jaw positions and MLC leaf patterns to reshape (effectively re-pointing) the treatment beam to follow the 3D target motion. For motion due to processes other than respiration (e.g., digestion), no correlation model is used - instead, target tracking is achieved with the periodically acquired x-ray images, without correlating with a continuous camera signal. RESULTS: The system's ability to correct for respiratory motion was demonstrated using a helical treatment plan delivered to a small (10 mm diameter) target. The phantom was moved following a breathing trace with an amplitude of 15 mm. Film measurements of delivered dose without motion, with motion, and with motion correction were acquired. Without motion correction, dose differences within the target of up to 30% were observed. With motion correction enabled, dose differences in the moving target were less than 2%. Nonrespiratory system performance was demonstrated using a helical treatment plan for a 55 mm diameter target following a prostate motion trace with up to 14 mm of motion. Without motion correction, dose differences up to 16% and shifts of greater than 5 mm were observed. Motion correction reduced these to less than a 6% dose difference and shifts of less than 2 mm. CONCLUSIONS: Real-time motion tracking and correction is technically feasible on a helical tomotherapy system. In one experiment, dose differences due to respiratory motion were greatly reduced. Dose differences due to nonrespiratory motion were also reduced, although not as much as in the respiratory case due to less frequent tracking updates. In both cases, beam-on time was not increased by motion correction, since the system tracks and corrects for motion simultaneously with treatment delivery.


Subject(s)
Movement , Radiotherapy, Intensity-Modulated/methods , Diagnostic Imaging , Feasibility Studies , Humans , Male , Prostate/diagnostic imaging , Prostate/physiology , Prostate/radiation effects , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Intensity-Modulated/instrumentation , Respiration , Time Factors
4.
Radiat Oncol ; 9: 252, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25430898

ABSTRACT

BACKGROUND: TomoTherapy (Accuray, USA) has an image-guided radiotherapy system with a megavoltage (MV) X-ray source and an on-board imaging device. This system allows one to acquire the delivery sinogram during the actual treatment, which partly includes information from the irradiated object. In this study, we try to develop image reconstruction during treatment with helical tomotherapy. FINDINGS: Sinogram data were acquired during helical tomotherapy delivery using an arc-shaped detector array that consists of 576 xenon-gas filled detector cells. In preprocessing, these were normalized with full air-scan data. A software program was developed that reconstructs 3D images during treatment with corrections as; (1) the regions outside the field were masked not to be added in the backprojection (a masking correction), and (2) each voxel of the reconstructed image was divided by the number of the beamlets passing through its voxel (a ray-passing correction). The masking correction produced a reconstructed image, however, it contained streak artifacts. The ray-passing correction reduced this artifact. Although the SNR (the ratio of mean to standard deviation in a homogeneous region) and the contrast of the reconstructed image were slightly improved with the ray-passing correction, use of only the masking correction was sufficient for the visualization purpose. CONCLUSIONS: The visualization of the treatment area was feasible by using the sinogram in helical tomotherapy. This proposed method would be useful in the treatment verification.


Subject(s)
Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods
5.
Med Image Anal ; 13(4): 621-33, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19592291

ABSTRACT

We propose a selective method of measurement for computing image similarities based on characteristic structure extraction and demonstrate its application to flexible endoscope navigation, in particular to a bronchoscope navigation system. Camera motion tracking is a fundamental function required for image-guided treatment or therapy systems. In recent years, an ultra-tiny electromagnetic sensor commercially became available, and many image-guided treatment or therapy systems use this sensor for tracking the camera position and orientation. However, due to space limitations, it is difficult to equip the tip of a bronchoscope with such a position sensor, especially in the case of ultra-thin bronchoscopes. Therefore, continuous image registration between real and virtual bronchoscopic images becomes an efficient tool for tracking the bronchoscope. Usually, image registration is done by calculating the image similarity between real and virtual bronchoscopic images. Since global schemes to measure image similarity, such as mutual information, squared gray-level difference, or cross correlation, average differences in intensity values over an entire region, they fail at tracking of scenes where less characteristic structures can be observed. The proposed method divides an entire image into a set of small subblocks and only selects those in which characteristic shapes are observed. Then image similarity is calculated within the selected subblocks. Selection is done by calculating feature values within each subblock. We applied our proposed method to eight pairs of chest X-ray CT images and bronchoscopic video images. The experimental results revealed that bronchoscope tracking using the proposed method could track up to 1600 consecutive bronchoscopic images (about 50s) without external position sensors. Tracking performance was greatly improved in comparison with a standard method utilizing squared gray-level differences of the entire images.


Subject(s)
Algorithms , Bronchoscopy/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Artificial Intelligence , Humans , Reproducibility of Results , Sensitivity and Specificity , User-Computer Interface
7.
Cell ; 128(6): 1187-203, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17382886

ABSTRACT

In Drosophila, approximately 50 classes of olfactory receptor neurons (ORNs) send axons to 50 corresponding glomeruli in the antennal lobe. Uniglomerular projection neurons (PNs) relay olfactory information to the mushroom body (MB) and lateral horn (LH). Here, we combine single-cell labeling and image registration to create high-resolution, quantitative maps of the MB and LH for 35 input PN channels and several groups of LH neurons. We find (1) PN inputs to the MB are stereotyped as previously shown for the LH; (2) PN partners of ORNs from different sensillar groups are clustered in the LH; (3) fruit odors are represented mostly in the posterior-dorsal LH, whereas candidate pheromone-responsive PNs project to the anterior-ventral LH; (4) dendrites of single LH neurons each overlap with specific subsets of PN axons. Our results suggest that the LH is organized according to biological values of olfactory input.


Subject(s)
Drosophila/anatomy & histology , Drosophila/physiology , Mushroom Bodies/physiology , Olfactory Receptor Neurons/physiology , Animals , Brain/anatomy & histology , Brain/physiology , Brain Mapping , Female , Fruit , Male , Odorants , Olfactory Pathways/physiology , Pheromones , Presynaptic Terminals/physiology , Sex Characteristics , Smell/physiology , Synapses/physiology
8.
Neurosurgery ; 60(2 Suppl 1): ONS147-56; discussion ONS156, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17297377

ABSTRACT

OBJECTIVE: New technology has enabled the increasing use of radiosurgery to ablate spinal lesions. The first generation of the CyberKnife (Accuray, Inc., Sunnyvale, CA) image-guided radiosurgery system required implanted radiopaque markers (fiducials) to localize spinal targets. A recently developed and now commercially available spine tracking technology called Xsight (Accuray, Inc.) tracks skeletal structures and eliminates the need for implanted fiducials. The Xsight system localizes spinal targets by direct reference to the adjacent vertebral elements. This study sought to measure the accuracy of Xsight spine tracking and provide a qualitative assessment of overall system performance. METHODS: Total system error, which is defined as the distance between the centroids of the planned and delivered dose distributions and represents all possible treatment planning and delivery errors, was measured using a realistic, anthropomorphic head-and-neck phantom. The Xsight tracking system error component of total system error was also computed by retrospectively analyzing image data obtained from eleven patients with a total of 44 implanted fiducials who underwent CyberKnife spinal radiosurgery. RESULTS: The total system error of the Xsight targeting technology was measured to be 0.61 mm. The tracking system error component was found to be 0.49 mm. CONCLUSION: The Xsight spine tracking system is practically important because it is accurate and eliminates the use of implanted fiducials. Experience has shown this technology to be robust under a wide range of clinical circumstances.


Subject(s)
Radiosurgery/instrumentation , Radiosurgery/methods , Spine/surgery , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Radiographic Image Enhancement , Spine/diagnostic imaging , Tomography Scanners, X-Ray Computed
9.
IEEE Trans Image Process ; 16(1): 153-61, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17283774

ABSTRACT

A new method for averaging multidimensional images is presented, which is based on signed Euclidean distance maps computed for each of the pixel values. We refer to the algorithm as "shape-based averaging" (SBA) because of its similarity to Raya and Udupa's shape-based interpolation method. The new method does not introduce pixel intensities that were not present in the input data, which makes it suitable for averaging nonnumerical data such as label maps (segmentations). Using segmented human brain magnetic resonance images, SBA is compared to label voting for the purpose of averaging image segmentations in a multiclassifier fashion. SBA, on average, performed as well as label voting in terms of recognition rates of the averaged segmentations. SBA produced more regular and contiguous structures with less fragmentation than did label voting. SBA also was more robust for small numbers of atlases and for low atlas resolutions, in particular, when combined with shape-based interpolation. We conclude that SBA improves the contiguity and accuracy of averaged image segmentations.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Subtraction Technique
10.
Comput Aided Surg ; 11(3): 109-17, 2006 May.
Article in English | MEDLINE | ID: mdl-16829504

ABSTRACT

This paper describes a method for tracking a bronchoscope by combining a position sensor and image registration. A bronchoscopy guidance system is a tool for providing real-time navigation information acquired from pre-operative CT images to a physician during a bronchoscopic examination. In this system, one of the fundamental functions is tracking a bronchoscope's camera motion. Recently, a very small electromagnetic position sensor has become available. It is possible to insert this sensor into a bronchoscope's working channel to obtain the bronchoscope's camera motion. However, the accuracy of its output is inadequate for bronchoscope tracking. The proposed combination of the sensor and image registration between real and virtual bronchoscopic images derived from CT images is quite useful for improving tracking accuracy. Furthermore, this combination has enabled us to achieve a real-time bronchoscope guidance system. We performed evaluation experiments for the proposed method using a rubber phantom model. The experimental results showed that the proposed system allowed the bronchoscope's camera motion to be tracked at 2.5 frames per second.


Subject(s)
Artificial Intelligence , Bronchoscopy/methods , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Subtraction Technique , Electromagnetic Phenomena , Humans , Imaging, Three-Dimensional , Pattern Recognition, Automated , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Systems Integration
11.
Comput Aided Surg ; 11(2): 51-62, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16782639

ABSTRACT

We present a system for 3D planning and pre-operative rehearsal of mandibular distraction osteogenesis procedures. Two primary architectural components are described: a planning system that allows geometric bone manipulation to rapidly explore various modifications and configurations, and a visuohaptic simulator that allows both general-purpose training and preoperative, patient-specific procedure rehearsal. We provide relevant clinical background, then describe the underlying simulation algorithms and their application to craniofacial procedures.


Subject(s)
Imaging, Three-Dimensional/methods , Mandibular Diseases/diagnostic imaging , Osteogenesis, Distraction/methods , User-Computer Interface , Computer Simulation , Humans , Mandibular Diseases/surgery , Radiography
12.
Article in English | MEDLINE | ID: mdl-17354827

ABSTRACT

This paper presents a method for tracking a bronchoscope based on motion prediction and image registration from multiple initial starting points as a function of a bronchoscope navigation system. We try to improve performance of bronchoscope tracking based on image registration using multiple initial guesses estimated using motion prediction. This method basically tracks a bronchoscopic camera by image registration between real bronchoscopic images and virtual ones derived from CT images taken prior to the bronchoscopic examinations. As an initial guess for image registration, we use multiple starting points to avoid falling into local minima. These initial guesses are computed using the motion prediction results obtained from the Kalman filter's output. We applied the proposed method to nine pairs of X-ray CT images and real bronchoscopic video images. The experimental results showed significant performance in continuous tracking without using any positional sensors.


Subject(s)
Algorithms , Bronchi/anatomy & histology , Bronchoscopy/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Movement , Subtraction Technique , Artificial Intelligence , Bronchography/methods , Humans , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
13.
Med Phys ; 32(9): 2870-80, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16266101

ABSTRACT

Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.


Subject(s)
Imaging, Three-Dimensional , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , Algorithms , Humans , Spine/diagnostic imaging
14.
IEEE Trans Med Imaging ; 24(11): 1441-54, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16279081

ABSTRACT

Generation of digitally reconstructed radiographs (DRRs) is computationally expensive and is typically the rate-limiting step in the execution time of intensity-based two-dimensional to three-dimensional (2D-3D) registration algorithms. We address this computational issue by extending the technique of light field rendering from the computer graphics community. The extension of light fields, which we call attenuation fields (AFs), allows most of the DRR computation to be performed in a preprocessing step; after this precomputation step, DRRs can be generated substantially faster than with conventional ray casting. We derive expressions for the physical sizes of the two planes of an AF necessary to generate DRRs for a given X-ray camera geometry and all possible object motion within a specified range. Because an AF is a ray-based data structure, it is substantially more memory efficient than a huge table of precomputed DRRs because it eliminates the redundancy of replicated rays. Nonetheless, an AF can require substantial memory, which we address by compressing it using vector quantization. We compare DRRs generated using AFs (AF-DRRs) to those generated using ray casting (RC-DRRs) for a typical C-arm geometry and computed tomography images of several anatomic regions. They are quantitatively very similar: the median peak signal-to-noise ratio of AF-DRRs versus RC-DRRs is greater than 43 dB in all cases. We perform intensity-based 2D-3D registration using AF-DRRs and RC-DRRs and evaluate registration accuracy using gold-standard clinical spine image data from four patients. The registration accuracy and robustness of the two methods is virtually identical whereas the execution speed using AF-DRRs is an order of magnitude faster.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Spine/diagnostic imaging , Subtraction Technique , Surgery, Computer-Assisted/methods , Computer Systems , Humans , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Spine/surgery
15.
IEEE Trans Med Imaging ; 24(11): 1455-68, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16279082

ABSTRACT

Accurate and fast localization of a predefined target region inside the patient is an important component of many image-guided therapy procedures. This problem is commonly solved by registration of intraoperative 2-D projection images to 3-D preoperative images. If the patient is not fixed during the intervention, the 2-D image acquisition is repeated several times during the procedure, and the registration problem can be cast instead as a 3-D tracking problem. To solve the 3-D problem, we propose in this paper to apply 2-D region tracking to first recover the components of the transformation that are in-plane to the projections. The 2-D motion estimates of all projections are backprojected into 3-D space, where they are then combined into a consistent estimate of the 3-D motion. We compare this method to intensity-based 2-D to 3-D registration and a combination of 2-D motion backprojection followed by a 2-D to 3-D registration stage. Using clinical data with a fiducial marker-based gold-standard transformation, we show that our method is capable of accurately tracking vertebral targets in 3-D from 2-D motion measured in X-ray projection images. Using a standard tracking algorithm (hyperplane tracking), tracking is achieved at video frame rates but fails relatively often (32% of all frames tracked with target registration error (TRE) better than 1.2 mm, 82% of all frames tracked with TRE better than 2.4 mm). With intensity-based 2-D to 2-D image registration using normalized mutual information (NMI) and pattern intensity (PI), accuracy and robustness are substantially improved. NMI tracked 82% of all frames in our data with TRE better than 1.2 mm and 96% of all frames with TRE better than 2.4 mm. This comes at the cost of a reduced frame rate, 1.7 s average processing time per frame and projection device. Results using PI were slightly more accurate, but required on average 5.4 s time per frame. These results are still substantially faster than 2-D to 3-D registration. We conclude that motion backprojection from 2-D motion tracking is an accurate and efficient method for tracking 3-D target motion, but tracking 2-D motion accurately and robustly remains a challenge.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Movement , Neuronavigation/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiosurgery/methods , Subtraction Technique , Artifacts , Artificial Intelligence , Computer Systems , Humans , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
16.
Med Phys ; 32(7): 2371-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16121595

ABSTRACT

This paper defines a simple protocol for competitive and quantified evaluation of electromagnetic tracking systems such as the NDI Aurora (A) and Ascension microBIRD with dipole transmitter (B). It establishes new methods and a new phantom design which assesses the reproducibility and allows comparability with different tracking systems in a consistent environment. A machined base plate was designed and manufactured in which a 50 mm grid of holes was precisely drilled for position measurements. In the center a circle of 32 equispaced holes enables the accurate measurement of rotation. The sensors can be clamped in a small mount which fits into pairs of grid holes on the base plate. Relative positional/orientational errors are found by subtracting the known distances/ rotations between the machined locations from the differences of the mean observed positions/ rotation. To measure the influence of metallic objects we inserted rods made of steel (SST 303, SST 416), aluminum, and bronze into the sensitive volume between sensor and emitter. We calculated the fiducial registration error and fiducial location error with a standard stylus calibration for both tracking systems and assessed two different methods of stylus calibration. The positional jitter amounted to 0.14 mm(A) and 0.08 mm(B). A relative positional error of 0.96 mm +/- 0.68 mm, range -0.06 mm; 2.23 mm(A) and 1.14 mm +/- 0.78 mm, range -3.72 mm; 1.57 mm(B) for a given distance of 50 mm was found. The relative rotation error was found to be 0.51 degrees (A)/0.04 degrees (B). The most relevant distortion caused by metallic objects results from SST 416. The maximum error 4.2 mm(A)/ > or = 100 mm(B) occurs when the rod is close to the sensor(20 mm). While (B) is more sensitive with respect to metallic objects, (A) is less accurate concerning orientation measurements. (B) showed a systematic error when distances are calculated.


Subject(s)
Biomechanical Phenomena/instrumentation , Electromagnetic Phenomena/instrumentation , Imaging, Three-Dimensional/instrumentation , Biomechanical Phenomena/methods , Electromagnetic Phenomena/methods , Equipment Design , Equipment Failure Analysis , Humans , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
17.
J Biomed Opt ; 10(2): 024018, 2005.
Article in English | MEDLINE | ID: mdl-15910092

ABSTRACT

Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain.


Subject(s)
Brain/anatomy & histology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Microscopy, Confocal , Animals , Bees
18.
Acad Radiol ; 12(1): 37-50, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15691724

ABSTRACT

RATIONALE AND OBJECTIVES: The two-dimensional (2D)-three dimensional (3D) registration of a computed tomography image to one or more x-ray projection images has a number of image-guided therapy applications. In general, fiducial marker-based methods are fast, accurate, and robust, but marker implantation is not always possible, often is considered too invasive to be clinically acceptable, and entails risk. There also is the unresolved issue of whether it is acceptable to leave markers permanently implanted. Intensity-based registration methods do not require the use of markers and can be automated because such geometric features as points and surfaces do not need to be segmented from the images. However, for spine images, intensity-based methods are susceptible to local optima in the cost function and thus need initial transformations that are close to the correct transformation. MATERIALS AND METHODS: In this report, we propose a hybrid similarity measure for 2D-3D registration that is a weighted combination of an intensity-based similarity measure (mutual information) and a point-based measure using one fiducial marker. We evaluate its registration accuracy and robustness by using gold-standard clinical spine image data from four patients. RESULTS: Mean registration errors for successful registrations for the four patients were 1.3 and 1.1 mm for the intensity-based and hybrid similarity measures, respectively. Whereas the percentage of successful intensity-based registrations (registration error < 2.5 mm) decreased rapidly as the initial transformation got further from the correct transformation, the incorporation of a single marker produced successful registrations more than 99% of the time independent of the initial transformation. CONCLUSION: The use of one fiducial marker reduces 2D-3D spine image registration error slightly and improves robustness substantially. The findings are potentially relevant for image-guided therapy. If one marker is sufficient to obtain clinically acceptable registration accuracy and robustness, as the preliminary results using the proposed hybrid similarity measure suggest, the marker can be placed on a spinous process, which could be accomplished without penetrating muscle or using fluoroscopic guidance, and such a marker could be removed relatively easily.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Calibration , Cervical Vertebrae/diagnostic imaging , Equipment Design , Humans , Image Processing, Computer-Assisted/instrumentation , Radiosurgery/instrumentation , Radiosurgery/methods , Spinal Diseases/surgery , Spine/diagnostic imaging , Surgery, Computer-Assisted/instrumentation , Thoracic Vertebrae/diagnostic imaging
19.
Article in English | MEDLINE | ID: mdl-16686002

ABSTRACT

In this paper, we propose a hybrid method for tracking a bronchoscope that uses a combination of magnetic sensor tracking and image registration. The position of a magnetic sensor placed in the working channel of the bronchoscope is provided by a magnetic tracking system. Because of respiratory motion, the magnetic sensor provides only the approximate position and orientation of the bronchoscope in the coordinate system of a CT image acquired before the examination. The sensor position and orientation is used as the starting point for an intensity-based registration between real bronchoscopic video images and virtual bronchoscopic images generated from the CT image. The output transformation of the image registration process is the position and orientation of the bronchoscope in the CT image. We tested the proposed method using a bronchial phantom model. Virtual breathing motion was generated to simulate respiratory motion. The proposed hybrid method successfully tracked the bronchoscope at a rate of approximately 1 Hz.


Subject(s)
Artificial Intelligence , Bronchoscopy/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetics , Subtraction Technique , User-Computer Interface , Algorithms , Artifacts , Humans , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Reproducibility of Results , Respiratory Mechanics , Sensitivity and Specificity , Systems Integration , Video Recording/methods
20.
Med Phys ; 32(7Part1): 2371-2379, 2005 Jul.
Article in English | MEDLINE | ID: mdl-28493577

ABSTRACT

This paper defines a simple protocol for competitive and quantified evaluation of electromagnetic tracking systems such as the NDI Aurora (A) and Ascension microBIRD with dipole transmitter (B). It establishes new methods and a new phantom design which assesses the reproducibility and allows comparability with different tracking systems in a consistent environment. A machined base plate was designed and manufactured in which a 50 mm grid of holes was precisely drilled for position measurements. In the center a circle of 32 equispaced holes enables the accurate measurement of rotation. The sensors can be clamped in a small mount which fits into pairs of grid holes on the base plate. Relative positional/orientational errors are found by subtracting the known distances/rotations between the machined locations from the differences of the mean observed positions/rotation. To measure the influence of metallic objects we inserted rods made of steel (SST 303, SST 416), aluminum, and bronze into the sensitive volume between sensor and emitter. We calculated the fiducial registration error and fiducial location error with a standard stylus calibration for both tracking systems and assessed two different methods of stylus calibration. The positional jitter amounted to 0.14 mm(A) and 0.08 mm(B). A relative positional error of 0.96mm±0.68mm, range -0.06 mm; 2.23 mm(A) and 1.14mm±0.78mm, range -3.72 mm; 1.57 mm(B) for a given distance of 50 mm was found. The relative rotation error was found to be 0.51° (A)/0.04° (B). The most relevant distortion caused by metallic objects results from SST 416. The maximum error 4.2mm(A)∕⩾100mm(B) occurs when the rod is close to the sensor(20 mm). While (B) is more sensitive with respect to metallic objects, (A) is less accurate concerning orientation measurements. (B) showed a systematic error when distances are calculated.

SELECTION OF CITATIONS
SEARCH DETAIL
...