Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 223, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539072

ABSTRACT

BACKGROUND: Triticale is making its way on dairy farms as an alternative forage crop. This requires the availability of high-yielding triticale varieties with good digestibility. Triticale forage breeding mainly focussed on biomass yield, but efforts to improve digestibility are increasing. We previously investigated the interrelationships among different quality traits in soft dough triticale: starch, acid detergent fibre and in vitro digestibility of organic matter (IVOMD) and of neutral detergent fibre (IVNDFD) of the total plant, IVNDFD and Klason lignin of the stems, and ear proportion and stem length. Here we determine the genetic control of these traits, using a genome-wide association (GWAS) approach. A total of 33,231 DArTseq SNP markers assessed in a collection of 118 winter triticale genotypes, including 101 varieties and 17 breeding lines, were used. RESULTS: The GWAS identified a total of 53 significant marker-trait associations (MTAs). The highest number of significantly associated SNP markers (n = 10) was identified for total plant IVNDFD. A SNP marker on chromosome 1A (4211801_19_C/T; 474,437,796 bp) was found to be significantly associated with ear proportion, and plant and stem IVNDFD, with the largest phenotypic variation for ear proportion (R²p = 0.23). Based on MTAs, candidate genes were identified which were of particular relevance for variation in in vitro digestibility (IVD) because they are putatively involved in plasma membrane transport, cytoskeleton organisation, carbohydrate metabolic processes, protein phosphorylation, and sterol and cell wall biogenesis. Interestingly, a xyloglucan-related candidate gene on chromosome 2R, SECCE2Rv1G0126340, was located in close proximity of a SNP significantly associated with stem IVNDFD. Furthermore, quantitative trait loci previously reported in wheat co-localized with significantly associated SNP markers in triticale. CONCLUSIONS: A collection of 118 winter triticale genotypes combined with DArTseq SNP markers served as a source for identifying 53 MTAs and several candidate genes for forage IVD and related traits through a GWAS approach. Taken together, the results of this study demonstrate that the genetic diversity available in this collection can be further exploited for research and breeding purposes to improve the IVD of triticale forage.


Subject(s)
Genome-Wide Association Study , Triticale , Detergents , Plant Breeding , Phenotype
2.
Theor Appl Genet ; 136(9): 186, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572118

ABSTRACT

Heterosis is the improved performance of hybrids compared with their parental components and is widely exploited in agriculture. According to quantitative genetic theory, genetic distance between parents at heterotic quantitative trait loci is required for heterosis, but how heterosis varies with genetic distance has remained elusive, despite intensive research on the topic. Experimental studies have often found a positive association between heterosis and genetic distance that, however, varied in strength. Most importantly, it has remained unclear whether heterosis increases continuously with genetic distance or whether there is an optimum genetic distance after which heterosis declines again. Here, we revisit the relationship between heterosis and genetic distance and provide perspectives on how to maximize heterosis and hybrid performance in breeding, as well as the consequences for the design of heterotic groups and the utilization of more exotic material and genetic resources.


Subject(s)
Hybrid Vigor , Quantitative Trait Loci , Hybridization, Genetic
3.
Theor Appl Genet ; 135(3): 993-1009, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34958397

ABSTRACT

KEY MESSAGE: The comparably low genotype-by-nitrogen level interaction suggests that selection in early generations can be done under high-input conditions followed by selection under different nitrogen levels to identify genotypes ideally suited for the target environment. Breeding high-yielding, nitrogen-efficient crops is of utmost importance to achieve greater agricultural sustainability. The aim of this study was to evaluate nitrogen use efficiency (NUE) of triticale, investigate long-term genetic trends and the genetic architecture, and develop strategies for NUE improvement by breeding. For this, we evaluated 450 different triticale genotypes under four nitrogen fertilization levels in multi-environment field trials for grain yield, protein content, starch content and derived indices. Analysis of temporal trends revealed that modern cultivars are better in exploiting the available nitrogen. Genome-wide association mapping revealed a complex genetic architecture with many small-effect QTL and a high level of pleiotropy for NUE-related traits, in line with phenotypic correlations. Furthermore, the effect of some QTL was dependent on the nitrogen fertilization level. High correlations of each trait between N levels and the rather low genotype-by-N-level interaction variance showed that generally the same genotypes perform well over different N levels. Nevertheless, the best performing genotype was always a different one. Thus, selection in early generations can be done under high nitrogen fertilizer conditions as these provide a stronger differentiation, but the final selection in later generations should be conducted with a nitrogen fertilization as in the target environment.


Subject(s)
Nitrogen , Triticale , Fertilization , Genome-Wide Association Study , Nitrogen/metabolism , Plant Breeding
4.
Theor Appl Genet ; 135(2): 653-665, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34807268

ABSTRACT

KEY MESSAGE: The phenomic predictive ability depends on the genetic architecture of the target trait, being high for complex traits and low for traits with major QTL. Genomic selection is a powerful tool to assist breeding of complex traits, but a limitation is the costs required for genotyping. Recently, phenomic selection has been suggested, which uses spectral data instead of molecular markers as predictors. It was shown to be competitive with genomic prediction, as it achieved predictive abilities as high or even higher than its genomic counterpart. The objective of this study was to evaluate the performance of phenomic prediction for triticale and the dependency of the predictive ability on the genetic architecture of the target trait. We found that for traits with a complex genetic architecture, like grain yield, phenomic prediction with NIRS data as predictors achieved high predictive abilities and performed better than genomic prediction. By contrast, for mono- or oligogenic traits, for example, yellow rust, marker-based approaches achieved high predictive abilities, while those of phenomic prediction were very low. Compared with molecular markers, the predictive ability obtained using NIRS data was more robust to varying degrees of genetic relatedness between the training and prediction set. Moreover, for grain yield, smaller training sets were required to achieve a similar predictive ability for phenomic prediction than for genomic prediction. In addition, our results illustrate the potential of using field-based spectral data for phenomic prediction. Overall, our result confirmed phenomic prediction as an efficient approach to improve the selection gain for complex traits in plant breeding.


Subject(s)
Phenomics , Plant Breeding , Genomics/methods , Genotype , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic
5.
Plants (Basel) ; 10(8)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34451637

ABSTRACT

The quantitatively inherited trait plant height is routinely evaluated in triticale breeding programs as it substantially influences lodging and disease susceptibility, is a main contributor to biomass yield, and is required to improve hybrid seed production by fine-tuning plant height in the female and male parental pools in hybrid breeding programs. In this study, we evaluated a panel of 846 diverse Central European triticale genotypes to dissect the genetic architecture underlying plant height by genome-wide association mapping. This revealed three medium- to large-effect QTL on chromosomes 5A, 4B, and 5R. Genetic and physical fine-mapping of the putative QTL revealed that the QTL on chromosome 5R most likely corresponds to Ddw1 and that the QTL on chromosome 5A is likely to be Rht12. Furthermore, we observed a temporal trend in registered cultivars with a decreasing plant height during the past decades, accompanied by an increasing use of the height-reducing alleles at the identified QTL. In summary, our results shed new light on the genetic control of plant height in triticale and open new avenues for future improvement by breeding.

6.
Sci Adv ; 6(24): eaay4897, 2020 06.
Article in English | MEDLINE | ID: mdl-32582844

ABSTRACT

The genetics underlying heterosis, the difference in performance of crosses compared with midparents, is hypothesized to vary with relatedness between parents. We established a unique germplasm comprising three hybrid wheat sets differing in the degree of divergence between parents and devised a genetic distance measure giving weight to heterotic loci. Heterosis increased steadily with heterotic genetic distance for all 1903 hybrids. Midparent heterosis, however, was significantly lower in the hybrids including crosses between elite and exotic lines than in crosses among elite lines. The analysis of the genetic architecture of heterosis revealed this to be caused by a higher portion of negative dominance and dominance-by-dominance epistatic effects. Collectively, these results expand our understanding of heterosis in crops, an important pillar toward global food security.

7.
Front Plant Sci ; 9: 1334, 2018.
Article in English | MEDLINE | ID: mdl-30374359

ABSTRACT

The mechanisms of aluminum (Al) resistance in wheat and rye involve the release of citrate and malate anions from the root apices. Many of the genes controlling these processes have been identified and their responses to Al treatment described in detail. This study investigated how the major Al resistance traits of wheat and rye are transferred to triticale (x Tritosecale Wittmack) which is a hybrid between wheat and rye. We generated octoploid and hexaploid triticale lines and compared them with the parental lines for their relative resistance to Al, organic anion efflux and expression of some of the genes encoding the transporters involved. We report that the strong Al resistance of rye was incompletely transferred to octoploid and hexaploid triticale. The wheat and rye parents contributed to the Al-resistance of octoploid triticale but the phenotypes were not additive. The Al resistance genes of hexaploid wheat, TaALMT1, and TaMATE1B, were more successfully expressed in octoploid triticale than the Al resistance genes in rye tested, ScALMT1 and ScFRDL2. This study demonstrates that an important stress-tolerance trait derived from hexaploid wheat was expressed in octoploid triticale. Since most commercial triticale lines are largely hexaploid types it would be beneficial to develop techniques to generate genetically-stable octoploid triticale material. This would enable other useful traits that are present in hexaploid but not tetraploid wheat, to be transferred to triticale.

8.
Theor Appl Genet ; 130(6): 1253-1266, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28326434

ABSTRACT

KEY MESSAGE: Restoration of fertility in the cytoplasmic male sterility-inducing Triticum timopheevii cytoplasm can be achieved with the major restorer locus Rf3 located on chromosome 1B, but is also dependent on modifier loci. Hybrid breeding relies on a hybrid mechanism enabling a cost-efficient hybrid seed production. In wheat and triticale, cytoplasmic male sterility based on the T. timopheevii cytoplasm is commonly used, and the aim of this study was to dissect the genetic architecture underlying fertility restoration. Our study was based on two segregating F2 triticale populations with 313 and 188 individuals that share a common female parent and have two different lines with high fertility restoration ability as male parents. The plants were cloned to enable replicated assessments of their phenotype and fertility restoration was evaluated based on seed set or staining for pollen fertility. The traits showed high heritabilities but their distributions differed between the two populations. In one population, a quarter of the lines were sterile, conforming to a 3:1 segregation ratio. QTL mapping identified two and three QTL in these populations, with the major QTL being detected on chromosome 1B. This QTL was collinear in both populations and likely corresponds to Rf3. We found that Rf3 explained approximately 30 and 50% of the genotypic variance, has a dominant mode of inheritance, and that the female parent lacks this locus, probably due to a 1B.1R translocation. Taken together, Rf3 is a major restorer locus that enables fertility restoration of the T. timopheevii cytoplasm, but additional modifier loci are needed for full restoration of male fertility. Consequently, Rf3 holds great potential for hybrid wheat and triticale breeding, but other loci must also be considered, either through marker-assisted or phenotypic selection.


Subject(s)
Chromosome Mapping , Genes, Plant , Plant Infertility/genetics , Quantitative Trait Loci , Triticum/genetics , Genes, Dominant , Genotype , Phenotype , Pollen/genetics
9.
Theor Appl Genet ; 130(4): 685-696, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28039516

ABSTRACT

KEY MESSAGE: Genome-wide association mapping of resistance against the novel, aggressive 'Warrior' race of yellow rust in triticale revealed a genetic architecture with some medium-effect QTL and a quantitative component, which in combination confer high levels of resistance on both leaves and ears. Yellow rust is an important destructive fungal disease in small grain cereals and the exotic 'Warrior' race has recently conquered Europe. The aim of this study was to investigate the genetic architecture of yellow rust resistance in hexaploid winter triticale as the basis for a successful resistance breeding. To this end, a diverse panel of 919 genotypes was evaluated for yellow rust infection on leaves and ears in multi-location field trials and genotyped by genotyping-by-sequencing as well as for known Yr resistance loci. Genome-wide association mapping identified ten quantitative trait loci (QTL) for yellow rust resistance on the leaves and seven of these also for ear resistance. The total genotypic variance explained by the QTL amounted to 44.0% for leaf and 26.0% for ear resistance. The same three medium-effect QTL were identified for both traits on chromosomes 1B, 2B, and 7B. Interestingly, plants pyramiding the resistance allele of all three medium-effect QTL were generally most resistant, but constitute less than 5% of the investigated triticale breeding material. Nevertheless, a genome-wide prediction yielded a higher predictive ability than prediction based on these three QTL. Taken together, our results show that yellow rust resistance in winter triticale is genetically complex, including both medium-effect QTL as well as a quantitative resistance component. Resistance to the novel 'Warrior' race of this fungal pathogen is consequently best achieved by recurrent selection in the field based on identified resistant lines and can potentially be assisted by genomic approaches.


Subject(s)
Basidiomycota , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Triticale/genetics , Chromosome Mapping , Europe , Gene Frequency , Genetic Association Studies , Genotype , Phenotype , Plant Diseases/microbiology , Triticale/microbiology
10.
J Sci Food Agric ; 97(1): 144-150, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26953167

ABSTRACT

BACKGROUND: The influence of nitrogen fertilisation and genotype on the amino acid (AA) digestibility of triticale grain was investigated in caecectomised laying hens. Three genotypes, Grenado, EAW6002 and Lasko, were cultivated with and without nitrogen fertilisation at the end of the heading stage. The six triticale variants as well as a basal diet were each used to feed seven laying hens in a 7 × 7 Latin square design. RESULTS: Nitrogen fertilisation influenced the digestibility of Cys, Glu, Phe and Ser in some triticale genotypes and reduced Ala, Ile, Lys, Met and Val digestibility in all genotypes (P < 0.05). Nitrogen fertilisation increased the concentration of all AAs in the grain. Consequently, the concentration of digestible AAs in the grains was increased for most AAs upon nitrogen fertilisation. Overall, Lys had the lowest digestibility, whereas that of Glu and Pro was the highest. For the triticale genotypes, the level of AA digestibility was highest for EAW6002 followed by Lasko and Grenado, with significant differences (P < 0.05) between genotypes for some but not all AAs. CONCLUSION: The results indicated that the accuracy of the digestible AA supply for hen feeding might benefit from considering fertilisation and genotype-specific digestibility data in feed formulation. © 2016 Society of Chemical Industry.


Subject(s)
Amino Acids/metabolism , Animal Feed/analysis , Chickens/metabolism , Nitrogen/metabolism , Seeds/metabolism , Triticale/chemistry , Triticale/metabolism , Amino Acids/analysis , Animal Nutritional Physiological Phenomena , Animals , Digestion , Female , Genotype , Nitrogen/analysis , Seeds/genetics , Triticale/genetics
11.
Arch Anim Nutr ; 70(2): 87-107, 2016.
Article in English | MEDLINE | ID: mdl-26829392

ABSTRACT

Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.


Subject(s)
Carbohydrates/chemistry , Edible Grain/chemistry , Edible Grain/genetics , Gene Expression Regulation, Plant/physiology , Genotype , Plant Proteins/chemistry , 6-Phytase/chemistry , 6-Phytase/metabolism , Carbohydrate Metabolism , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Minerals/chemistry , Minerals/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds
12.
Proc Natl Acad Sci U S A ; 112(51): 15624-9, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26663911

ABSTRACT

Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.


Subject(s)
Hybrid Vigor , Hybridization, Genetic , Plant Breeding , Triticum/genetics , Algorithms , Crops, Agricultural , Quantitative Trait Loci , Seeds
13.
Theor Appl Genet ; 128(2): 291-301, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25511902

ABSTRACT

KEY MESSAGE: CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.


Subject(s)
Breeding/methods , Hybrid Vigor , Hybridization, Genetic , Poaceae/genetics , Genotype , Models, Genetic , Phenotype , Plant Infertility , Seeds/growth & development
14.
G3 (Bethesda) ; 4(9): 1585-91, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25237110

ABSTRACT

Many biologically and agronomically important traits are dynamic and show temporal variation. In this study, we used triticale (× Triticosecale Wittmack) as a model crop to assess the genetic dynamics underlying phenotypic plasticity of adult plant development. To this end, a large mapping population with 647 doubled haploid lines derived from four partially connected families from crosses among six parents was scored for developmental stage at three different time points. Using genome-wide association mapping, we identified main effect and epistatic quantitative trait loci (QTL) at all three time points. Interestingly, some of these QTL were identified at all time points, whereas others appear to only contribute to the genetic architecture at certain developmental stages. Our results illustrate the temporal contribution of QTL to the genetic control of adult plant development and more generally, the temporal genetic patterns of regulation that underlie dynamic traits.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Quantitative Trait Loci , Chromosome Mapping , Genome, Plant , Genome-Wide Association Study , Models, Genetic , Phenotype
15.
Theor Appl Genet ; 127(9): 1949-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056002

ABSTRACT

KEY MESSAGE: Analyses of registration trials of winter barley suggested that yield and yield stability can be enhanced by developing hybrid instead of line varieties. Yield stability is central to cope with the expected increased frequency of extreme weather conditions. The objectives of our study were to (1) examine the dimensioning of field trials needed to precisely portray yield stability of individual winter barley (Hordeum vulgare L.) genotypes, (2) compare grain yield performance and yield stability of two-rowed lines with those of six-rowed lines and hybrids, and (3) investigate the association of various agronomic traits with yield stability. Static and dynamic yield stability as well as grain yield performance was determined in five series of 3-year registration trials of winter barley in Germany. Each series included 4 or 5 six-rowed hybrids, 40-46 six-rowed inbred lines, as well as 42-49 two-rowed inbred lines. The genotypes were evaluated in 10-45 environments, i.e. year-by-location combinations. We found that precise assessment of yield stability of individual genotypes requires phenotyping in at least 40 test environments. Therefore, selection for yield stability is not usually feasible since the required number of test environments exceeds the common capacity of barley breeding programs. Also, indirect improvement of yield stability by means of agronomic traits seemed not possible since there was no constant association of any agronomic trait with yield stability. We found that compared with line varieties, hybrids showed on average higher grain yield performance combined with high dynamic yield stability. In conclusion, breeding hybrid instead of line varieties may be a promising way to develop high yielding and yield stable varieties.


Subject(s)
Breeding , Hordeum/genetics , Hybridization, Genetic , Quantitative Trait Loci , Gene-Environment Interaction , Genotype , Germany , Hordeum/growth & development , Models, Genetic , Seeds/growth & development
16.
BMC Genet ; 15: 59, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24885543

ABSTRACT

BACKGROUND: Plant height is a prime example of a dynamic trait that changes constantly throughout adult development. In this study we utilised a large triticale mapping population, comprising 647 doubled haploid lines derived from 4 families, to phenotype for plant height by a precision phenotyping platform at multiple time points. RESULTS: Using multiple-line cross QTL mapping we identified main effect and epistatic QTL for plant height for each of the time points. Interestingly, some QTL were detected at all time points whereas others were specific to particular developmental stages. Furthermore, the contribution of the QTL to the genotypic variance of plant height also varied with time as exemplified by a major QTL identified on chromosome 6A. CONCLUSIONS: Taken together, our results in the small grain cereal triticale reveal the importance of considering temporal genetic patterns in the regulation of complex traits such as plant height.


Subject(s)
Chromosome Mapping , Edible Grain/genetics , Quantitative Trait Loci , Epistasis, Genetic , Genotype , Phenotype
17.
BMC Genomics ; 15: 458, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24916962

ABSTRACT

BACKGROUND: The nature of dynamic traits with their phenotypic plasticity suggests that they are under the control of a dynamic genetic regulation. We employed a precision phenotyping platform to non-invasively assess biomass yield in a large mapping population of triticale at three developmental stages. RESULTS: Using multiple-line cross QTL mapping we identified QTL for each of these developmental stages which explained a considerable proportion of the genotypic variance. Some QTL were identified at each developmental stage and thus contribute to biomass yield throughout the studied developmental phases. Interestingly, we also observed QTL that were only identified for one or two of the developmental stages illustrating a temporal contribution of these QTL to the trait. In addition, epistatic QTL were detected and the epistatic interaction landscape was shown to dynamically change with developmental progression. CONCLUSIONS: In summary, our results reveal the temporal dynamics of the genetic architecture underlying biomass accumulation in triticale and emphasize the need for a temporal assessment of dynamic traits.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Algorithms , Biomass , Chromosome Mapping , Epistasis, Genetic , Genome, Plant , Genotype , Phenotype , Quantitative Trait Loci
18.
PLoS One ; 9(6): e99848, 2014.
Article in English | MEDLINE | ID: mdl-24927281

ABSTRACT

Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm.


Subject(s)
Edible Grain/genetics , Seasons , Chromosomes, Plant/genetics , Cold Temperature , Edible Grain/physiology , Genome, Plant/genetics , Quantitative Trait Loci/genetics
19.
Theor Appl Genet ; 127(7): 1527-36, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24852306

ABSTRACT

KEY MESSAGE: The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage. Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.


Subject(s)
Fusarium/isolation & purification , Genes, Plant , Quantitative Trait Loci , Secale/genetics , Secale/microbiology , Alleles , Breeding , Disease Resistance/genetics , Genetic Linkage , Genetic Variation , Genotype , Haploidy , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Secale/growth & development
20.
Theor Appl Genet ; 127(2): 309-16, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24162154

ABSTRACT

KEY MESSAGE: We present experimental data for wheat, barley, and triticale suggesting that hybrids manifest on average higher yield stability than inbred lines. Yield stability is assumed to be higher for hybrids than for inbred lines, but experimental data proving this hypothesis is scarce for autogamous cereals. We used multi-location grain yield trials and compared the yield stability of hybrids versus lines for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and triticale (×Triticosecale Wittmack). Our study comprised three phenotypic data sets of 1,749 wheat, 96 barley, and 130 triticale genotypes, which were evaluated for grain yield in up to five contrasting locations. Yield stability of the group of hybrids was compared with that of the group of inbred lines estimating the stability variance. For all three crops we observed a significantly (P < 0.05) higher yield stability of hybrids compared to lines. The enhanced yield stability of hybrids as compared to lines represents a major step forward, facilitating coping with the increasing abiotic stress expected from the predicted climate change.


Subject(s)
Edible Grain/genetics , Hordeum/genetics , Hybridization, Genetic , Triticum/genetics , Edible Grain/physiology , Hordeum/physiology , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...