Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(22): 7171-7179, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37963823

ABSTRACT

The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane ß-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded ß-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of ß-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 µs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 µs. Possible implications of these findings for α-synuclein pathology are discussed.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Cell Membrane/metabolism
2.
J Chem Phys ; 159(13)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37795787

ABSTRACT

Proton transport in aqueous systems occurs by making and breaking covalent bonds, a process that classical force fields cannot reproduce. Various attempts have been made to remedy this deficiency, by valence bond theory or instantaneous proton transfers, but the ability of such methods to provide a realistic picture of this fundamental process has not been fully evaluated. Here we compare an ab initio molecular dynamics (AIMD) simulation of an excess proton in water to a simulation of a classical H3O+ in TIP3P water. The energy gap upon instantaneous proton transfer from H3O+ to an acceptor water molecule is much higher in the classical simulation than in the AIMD configurations evaluated with the same classical potential. The origins of this discrepancy are identified by comparing the solvent structures around the excess proton in the two systems. One major structural difference is in the tilt angle of the water molecules that accept an hydrogen bond from H3O+. The lack of lone pairs in TIP3P produces a tilt angle that is too large and generates an unfavorable geometry after instantaneous proton transfer. This problem can be alleviated by the use of TIP5P, which gives a tilt angle much closer to the AIMD result. Another important factor that raises the energy gap is the different optimal distance in water-water vs H3O+-water H-bonds. In AIMD the acceptor is gradually polarized and takes a hydronium-like configuration even before proton transfer actually happens. Ways to remedy some of these problems in classical simulations are discussed.

3.
J Mol Recognit ; 32(12): e2810, 2019 12.
Article in English | MEDLINE | ID: mdl-31456282

ABSTRACT

This review describes selected basics of water in biomolecular recognition. We focus on a qualitative understanding of the most important physical aspects, how these change in magnitude between bulk water and protein environment, and how the roles that water plays for proteins arise from them. These roles include mechanical support, thermal coupling, dielectric screening, mass and charge transport, and the competition with a ligand for the occupation of a binding site. The presence or absence of water has ramifications that range from the thermodynamic binding signature of a single ligand up to cellular survival. The large inhomogeneity in water density, polarity and mobility around a solute is hard to assess in experiment. This is a source of many difficulties in the solvation of protein models and computational studies that attempt to elucidate or predict ligand recognition. The influence of water in a protein binding site on the experimental enthalpic and entropic signature of ligand binding is still a point of much debate. The strong water-water interaction in enthalpic terms is counteracted by a water molecule's high mobility in entropic terms. The complete arrest of a water molecule's mobility sets a limit on the entropic contribution of a water displacement process, while the solvent environment sets limits on ligand reactivity.


Subject(s)
Proteins/chemistry , Water/chemistry , Binding Sites , Hydrogen Bonding , Ligands
4.
J Comput Chem ; 39(26): 2226-2242, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30280398

ABSTRACT

We investigate the ability of several free-energy calculation methods to combine two alchemical changes. We use Bennett acceptance ratio (BAR), thermodynamic integration (TI), extended TI (X-TI), and enveloping distribution sampling (EDS) to perturb a water molecule, which is restrained to an amino acid that is also being perturbed. In addition to these pairwise methods, we present two two-dimensional approaches, EDS-TI and two-dimensional TI (2D-TI). We compare feasibility, efficiency and usability of these methods in regard to our simple model system, which mimics the displacement of a water molecule in the active site of a protein on residue mutation. The correct treatment of structural water has been shown to greatly aid binding affinity calculations in some cases that remained elusive otherwise. This is of broad interest in, for example, drug design, and we conclude that thus far, the pairwise method BAR and also the newer X-TI remain the most suitable methods to treat this problem as long as few end states are involved. © 2018 Wiley Periodicals, Inc.


Subject(s)
Models, Molecular , Oligopeptides/chemistry , Thermodynamics , Water/chemistry
5.
J Comput Chem ; 37(29): 2597-605, 2016 11 05.
Article in English | MEDLINE | ID: mdl-27634475

ABSTRACT

Previous free-energy calculations have shown that the seemingly simple transformation of the tripeptide KXK to KGK in water holds some unobvious challenges concerning the convergence of the forward and backward thermodynamic integration processes (i.e., hysteresis). In the current study, the central residue X was either alanine, serine, glutamic acid, lysine, phenylalanine, or tyrosine. Interestingly, the transformation from alanine to glycine yielded the highest hysteresis in relation to the extent of the chemical change of the side chain. The reason for that could be attributed to poor sampling of φ2 /ψ2 dihedral angles along the transformation. Altering the nature of alanine's Cß atom drastically improved the sampling and at the same time led to the identification of high energy barriers as cause for it. Consequently, simple strategies to overcome these barriers are to increase simulation time (computationally expensive) or to use enhanced sampling techniques such as Hamiltonian replica exchange molecular dynamics and one-step perturbation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

6.
Molecules ; 21(4): 499, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27092480

ABSTRACT

The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Binding Sites , Catalytic Domain , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Thermodynamics , Water/chemistry
7.
Langmuir ; 28(49): 16788-97, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23101753

ABSTRACT

In this study, we demonstrate that emulsified microemulsions and micellar cubosomes are suitable as sustained delivery vehicles for water-soluble proteins. Through structural modifications, the loading efficiency of two model proteins, namely bovine serum albumin (BSA) and cytochrome c could be remarkably increased. A procedure for preparing these particles loaded with optimized amounts of sensitive substances is presented. Loading and dispersion at low temperatures is performed in two successive steps. First, a water-in-oil microemulsion is loaded with the proteins. Subsequently, this phase is dispersed in water resulting in particles with microemulsion and micellar cubic internal structure and a size of approximately 620 nm. This two-step method ensures optimal loading of the particles with the proteins. These nanostructured particles are able to sustain the release of the water-soluble BSA and cytochrome c. Within one day, less than 10% of BSA and 15% of cytochrome c are released. The release rate of cytochrome c is influenced by the nanostructure of the particles.


Subject(s)
Cytochromes c/chemistry , Delayed-Action Preparations/chemistry , Drug Compounding/methods , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Chromatography, Reverse-Phase , Emulsions , Horses , Hydrophobic and Hydrophilic Interactions , Kinetics , Micelles , Mineral Oil/chemistry , Particle Size , Scattering, Small Angle , Solubility , Temperature , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...