Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 263: 128282, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297226

ABSTRACT

Removal of brominated flame retardants (BFRs) from polymers before disposal or recycling will alleviate negative environmental effects and ensure safe usage of recycled products. Extraction of BFRs in supercritical CO2 is appealing but also presents challenges to industries due to limited solubility and lack of kinetic studies. For a more comprehensive evaluation of supercritical extraction potentialities, we (i) developed an on-line pressure apparatus that is compatible with both the FTIR and UV-vis spectrometers to enable kinetic and thermodynamic studies; (ii) studied kinetic extraction involving three conventional and two novel BFRs as well as three typical polymeric matrix. Solubilities were determined using the gravimetric method or X-ray fluorescence. FTIR exhibited a superior applicability compared to UV-vis in the following BFR extraction's time-dependency binary and ternary systems. We observed that faster stirring speed, higher temperature, and finer particle size can accelerate the overall extraction kinetics. In binary systems, it took less than 2 h to achieve equilibrium for each BFR at 60 °C, 25 MPa and 1000 rpm. In the presence of polymeric matrix, slower extraction kinetics were observed due to the occurrence of competitive dissolution and molecular diffusion within the matrix. Mathematical models derived from irreversible desorption and Fick's diffusion laws fitted well with the observed extraction kinetics of BFRs, thus enabling us to identify the rate-determining step. The high solubilization rate coefficients that we measured for BFRs revealed that the dynamic extraction process in up-scaling design could compensate for the low solubility with flowing supercritical CO2.


Subject(s)
Flame Retardants , Hydrocarbons, Brominated , Carbon Dioxide , Diffusion , Hydrocarbons, Brominated/analysis , Kinetics , Polymers
2.
Small ; : e1801348, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29971912

ABSTRACT

Graphene nanogap systems are promising research tools for molecular electronics, memories, and nanodevices. Here, a way to control the propagation of nanogaps in monolayer graphene during electroburning is demonstrated. A tightly focused femtosecond laser beam is used to induce defects in graphene according to selected patterns. It is shown that, contrary to the pristine graphene devices where nanogap position and shape are uncontrolled, the nanogaps in prepatterned devices propagate along the defect line created by the femtosecond laser. Using passive voltage contrast combined with atomic force microscopy, the reproducibility of the process with a 92% success rate over 26 devices is confirmed. Coupling in situ infrared thermography and finite element analysis yields a real-time estimation of the device temperature during electrical loading. The controlled nanogap formation occurs well below 50 °C when the defect density is high enough. In the perspective of graphene-based circuit fabrication, the availability of a cold electroburning process is critical to preserve the full circuit from thermal damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...