Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1339093, 2024.
Article in English | MEDLINE | ID: mdl-38303913

ABSTRACT

Xylitol is a pentose-polyol widely applied in the food and pharmaceutical industry. It can be produced from lignocellulosic biomass, valorizing second-generation feedstocks. Biotechnological production of xylitol requires scalable solutions suitable for industrial scale processes. Immobilized-cells systems offer numerous advantages. Although fungal pellet carriers have gained attention, their application in xylitol production remains unexplored. In this study, the yeast strain P. fermentans WC 1507 was employed for xylitol production. The optimal conditions were observed with free-cell cultures at pH above 3.5, low oxygenation, and medium containing (NH4)2SO4 and yeast extract as nitrogen sources (xylitol titer 79.4 g/L, YP/S 66.3%, and volumetric productivity 1.3 g/L/h). Yeast cells were immobilized using inactive Aspergillus oryzae pellet mycelial carrier (MC) and alginate beads (AB) and were tested in flasks over three consecutive production runs. Additionally, the effect of a 0.2% w/v alginate layer, coating the outer surface of the carriers (cMC and cAB, respectively), was examined. While YP/S values observed with both immobilized and free cells were similar, the immobilized cells exhibited lower final xylitol titer and volumetric productivity, likely due to mass transfer limitations. AB and cAB outperformed MC and cMC. The uncoated AB carriers were tested in a laboratory-scale airlift bioreactor, which demonstrated a progressive increase in xylitol production in a repeated batch process: in the third run, a xylitol titer of 63.0 g/L, YP/S of 61.5%, and volumetric productivity of 0.52 g/L/h were achieved. This study confirmed P. fermentans WC 1507 as a promising strain for xylitol production in both free- and entrapped-cells systems. Considering the performance of the wild strain, a metabolic engineering intervention aiming at further improving the efficiency of xylitol production could be justified. MC and AB proved to be viable supports for cell immobilization, but additional process development is necessary to identify the optimal bioreactor configuration and fermentation conditions.

2.
Food Microbiol ; 116: 104366, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689427

ABSTRACT

Sherry wines are film wines produced in the Jerez-Xérès-Sherry and Montilla-Moriles regions in southern Spain which require an aging process under flor biofilms, known as "biological aging". The presence of mites in Sherry wine wineries has been reported and associated with improved wine volatile properties. This work analyzes the microbial diversity in flor biofilms and mites in Sherry wine wineries using Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) and ITS/gene amplification. Two mite species, Carpoglyphus lactis and Tyrophagus putrescentiae, were spotted in the sampled winery and 32 microorganism species were identified in their exoskeleton or surrounding biofilms. To our knowledge, 26 of these species were never described before in sherry wine environments. We hypothesized that mites feed on the flor biofilms as well as another type of biofilm located in barrel cracks, known by winemakers as "natas" (cream in English). These non-studied biofilms showed the highest microbiome diversity among all samples (followed by C. lactis spotted nearby) thus, representing a niche of microorganisms with potential biotechnological interest. Besides mites, Drosophila flies were spotted in the sampling areas. The role of flies and mites as vectors that transport microorganisms among different niches (i.e., flor biofilms and natas) is discussed.


Subject(s)
Mites , Wine , Animals , Biofilms , Biotechnology , Food
3.
World J Microbiol Biotechnol ; 39(10): 271, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37541980

ABSTRACT

Sherry wine is a pale-yellowish dry wine produced in Southern-Spain which features are mainly due to biological aging when the metabolism of biofilm-forming yeasts (flor yeasts) consumes ethanol (and other non-fermentable carbon sources) from a previous alcoholic fermentation, and produces volatile compounds such as acetaldehyde. To start aging and maintain the wine stability, a high alcohol content is required, which is achieved by the previous fermentation or by adding ethanol (fortification). Here, an alternative method is proposed which aims to produce a more economic, distinctive Sherry wine without fortification. For this, a flor yeast has been pre-acclimatized to glycerol consumption against ethanol, and later confined in a fungal-based immobilization system known as "microbial biocapsules", to facilitate its inoculum. Once aged, the wines produced using biocapsules and free yeasts (the conventional method) exhibited chemical differences in terms of acidity and volatile concentrations. These differences were evaluated positively by a sensory panel. Pre-acclimatization of flor yeasts to glycerol consumption was not successful but when cells were immobilized in fungal pellets, ethanol consumption was lower. We believe that immobilization of flor yeasts in microbial biocapsules is an economic technique that can be used to produce high quality differentiated Sherry wines.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Glycerol/metabolism , Acetaldehyde/analysis , Acetaldehyde/metabolism , Ethanol/metabolism , Fermentation
4.
Microorganisms ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512803

ABSTRACT

Higher alcohols produced by yeast during the fermentation of sparkling wine must have the greatest impact on the smell and taste of wine. At present, the metabolic response to methanol and higher alcohols formation of Saccharomyces cerevisiae under endogenous CO2 overpressure has not been fully elucidated. In this work, a proteomics and metabolomics approach using a OFFGEL fractionator and the LTQ Orbitrap for the protein identification, followed by a metabolomic study for the detection and quantification of both higher alcohols (GC-FID and SBSE-TD-GC-MS) and amino acids (HPLC), was carried out to investigate the proteomic and metabolomic changes of S. cerevisiae in relation to higher alcohols formation under a CO2 overpressure condition in a closed bottle. The control condition was without CO2 overpressure in an open bottle. Methanol and six higher alcohols were detected in both conditions, and we have been able to relate to a total of 22 proteins: 15 proteins in the CO2 overpressure condition and 22 proteins in the control condition. As for the precursors of higher alcohols, 18 amino acids were identified in both conditions. The metabolic and proteomic profiles obtained in both conditions were different, so CO2 overpressure could be affecting the metabolism of higher alcohols. Furthermore, it was not possible to establish direct correlations in the condition under CO2 overpressure; however, in the condition without pressure it was possible to establish relationships. The data presented here can be considered as a platform that serves as a basis for the S. cerevisiae metabolome-proteome with the aim of understanding the behavior of yeast under conditions of second fermentation in the production of sparkling wines.

5.
Appl Microbiol Biotechnol ; 107(18): 5715-5726, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37490127

ABSTRACT

Immobilized yeast cells are used industrially in winemaking processes such as sparkling wine and Sherry wine production. Here, a novel approach has been explored for the infusion and immobilization of yeast cells into filamentous fungal pellets, which serve as a porous natural material. This was accomplished through vacuum application to force the yeast cells towards the core of the fungal pellets followed by culture in YPD medium to promote their growth from the interior. This method represents an improved variation of a previous approach for the assembly of "yeast biocapsules," which entailed the co-culture of both fungal and yeast cells in the same medium. A comparison was made between both techniques in terms of biocapsule productivity, cell retention capacity, and cell biological activity through an alcoholic fermentation of a grape must. The results indicated a substantial increase in biocapsule productivity (37.40-fold), higher cell retention within the biocapsules (threefold), and reduction in cell leakage during fermentation (twofold). Although the majority of the chemical and sensory variables measured in the produced wine did not exhibit notable differences from those produced utilizing suspended yeast cells (conventional method), some differences (such as herbaceous and toasted smells, acidity, bitterness, and persistence) were perceived and wines positively evaluated by the sensory panel. As the immobilized cells remain functional and the encapsulation technique can be expanded to other microorganisms, it creates potential for additional industrial uses like biofuel, health applications, microbe encapsulation and delivery, bioremediation, and pharmacy. KEY POINTS: • New approach improves biocapsule productivity and cell retention. • Immobilized yeast remains functional in fermentation. • Wine made with immobilized yeast had positive sensory differences.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/chemistry , Cell Encapsulation , Vacuum , Fermentation , Wine/microbiology
6.
Molecules ; 27(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432158

ABSTRACT

In this work, we study the effect of bentonite addition to the grape must before alcoholic fermentation on the chemical composition and sensorial profile of the obtained wines. Fermentations were carried out with two Saccharomyces cerevisiae commercial active dry yeasts treated or not with bentonite and were compared with a control wine obtained by spontaneous fermentation (using the grape must microbiota). Several significant effects on the chemical and sensorial attributes were established by statistical treatments. The selection by multiple variable analysis of seven volatile molecules (ethyl acetate; methanol; 1-propanol; isobutanol; 2-methyl-1-butanol; 3-metyl-1-butanol and 2-phenylethanol) provided several footprints that provide an easy visualization of bentonite effects on wine volatile compounds. A Principal Component Analysis carried out with all the compounds quantified by Gas-Chromatography revealed that the first two Principal Components explain 60.15 and 25.91%, respectively, of the total variance and established five groups that match with the five wines analyzed. Lastly, predictive models at p ≤ 0.05 level for the attributes sight, smell and taste were obtained by Partial Least Squared regression analysis of selected chemical variables.


Subject(s)
Vitis , Wine , Wine/analysis , Vitis/chemistry , Fermentation , Bentonite , 1-Butanol , Saccharomyces cerevisiae
7.
Int J Food Microbiol ; 348: 109226, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33964807

ABSTRACT

The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.


Subject(s)
Carbon Dioxide/analysis , Carbon Dioxide/pharmacology , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Air Pressure , Ethanol/metabolism , Fermentation , Odorants/analysis , Proteome/analysis , Proteomics , Stress, Physiological/physiology , Wine/analysis , Yeast, Dried/metabolism
8.
Food Chem ; 357: 129784, 2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33901917

ABSTRACT

A native veil-forming yeast and a commercial yeast strain were used to elaborate sparkling wines by the Champenoise method with a grape variety traditionally used for the production of still wines. Wines aged on lees for fifteen months were sampled at five points and their physicochemical and sensory indices were analysed. Unsupervised and supervised statistical techniques were used to establish a comparison between 81 volatile compounds and eight odour descriptors (chemical, fruity, floral, fatty, balsamic, vegetal, empyreumatic and spicy). Principal component analysis of both datasets showed good separation among the samples in relation to ageing time and yeast strain. By using a partial least squares regression-based criterion, 38 odour active compounds were selected as the most influential for the ageing factor and out of them, only 27 were unique to certain aroma descriptors. These results contribute to a better understanding of the aroma perception of sparkling wines.

9.
Food Chem ; 334: 127574, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32721835

ABSTRACT

Effect of yeast inoculation format (F), temperature (T), and "on lees" ageing time (t) factors were evaluated on the composition of sparkling wines by a quantitative fingerprint obtained from volatile metabolites and the response of an electronic nose (E-nose). Wines elaborated according the traditional method at 10 and 14 °C, free cells and yeast biocapsules formats were monitored at 15 and 24 months of ageing time. Sixty-six volatiles identified and quantified in the eight sampling lots were subjected to a pattern recognition technique. A dual criterion based on univariate (ANOVA) and multivariate analysis (PLS-DA) through the variable importance projection (VIP) values, allowed to identify ten volatiles as potential markers for T factor, eleven for t and twelve for F factors. The discriminant models based on E-nose dataset enable a 100% correct classification of samples, in relation with t and F factors and the 83% for T factor.


Subject(s)
Electronic Nose , Saccharomyces cerevisiae/metabolism , Volatile Organic Compounds/analysis , Wine/analysis , Temperature , Time Factors
10.
Front Microbiol ; 12: 825756, 2021.
Article in English | MEDLINE | ID: mdl-35222316

ABSTRACT

Flor yeast velum is a biofilm formed by certain yeast strains that distinguishes biologically aged wines such as Sherry wine from southern Spain from others. Although Saccharomyces cerevisiae is the most common species, 5.8 S-internal transcribed spacer (ITS) restriction fragment length polymorphism analyses have revealed the existence of non-Saccharomyces species. In order to uncover the flor microbiota diversity at a species level, we used ITS (internal transcribed spacer 1)-metabarcoding and matrix-assisted laser desorption/Ionization time of flight mass spectrometry techniques. Further, to enhance identification effectiveness, we performed an additional incubation stage in 1:1 wine:yeast extract peptone dextrose (YPD) before identification. Six species were identified: S. cerevisiae, Pichia manshurica, Pichia membranifaciens, Wickerhamomyces anomalus, Candida guillermondii, and Trichosporon asahii, two of which were discovered for the first time (C. guillermondii and Trichosporon ashaii) in Sherry wines. We analyzed wines where non-Saccharomyces yeasts were present or absent to see any potential link between the microbiota and the chemical profile. Only 2 significant volatile chemicals (out of 13 quantified), ethanol and ethyl lactate, and 2 enological parameters (out of 6 quantified), such as pH and titratable acidity, were found to differ in long-aged wines. Although results show a low impact where the non-Saccharomyces yeasts are present, these yeasts isolated from harsh environments (high ethanol and low nutrient availability) could have a potential industrial interest in fields such as food microbiology and biofuel production.

11.
Microorganisms ; 8(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784425

ABSTRACT

Sparkling wine is a distinctive wine. Saccharomyces cerevisiae flor yeasts is innovative and ideal for the sparkling wine industry due to the yeasts' resistance to high ethanol concentrations, surface adhesion properties that ease wine clarification, and the ability to provide a characteristic volatilome and odorant profile. The objective of this work is to study the proteins in a flor yeast and a conventional yeast that are responsible for the production of the volatile compounds released during sparkling wine elaboration. The proteins were identified using the OFFGEL fractionator and LTQ Orbitrap. We identified 50 and 43 proteins in the flor yeast and the conventional yeast, respectively. Proteomic profiles did not show remarkable differences between strains except for Adh1p, Fba1p, Tdh1p, Tdh2p, Tdh3p, and Pgk1p, which showed higher concentrations in the flor yeast versus the conventional yeast. The higher concentration of these proteins could explain the fuller body in less alcoholic wines obtained when using flor yeasts. The data presented here can be thought of as a proteomic map for either flor or conventional yeasts which can be useful to understand how these strains metabolize the sugars and release pleasant volatiles under sparkling wine elaboration conditions.

12.
Microorganisms ; 8(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759881

ABSTRACT

In this study, a first proteomic approach was carried out to characterize the adaptive response of cell wall-related proteins to endogenous CO2 overpressure, which is typical of second fermentation conditions, in two wine Saccharomyces cerevisiae strains (P29, a conventional second fermentation strain, and G1, a flor yeast strain implicated in sherry wine making). The results showed a high number of cell wall proteins in flor yeast G1 under pressure, highlighting content at the first month of aging. The cell wall proteomic response to pressure in flor yeast G1 was characterized by an increase in both the number and content of cell wall proteins involved in glucan remodeling and mannoproteins. On the other hand, cell wall proteins responsible for glucan assembly, cell adhesion, and lipid metabolism stood out in P29. Over-represented proteins under pressure were involved in cell wall integrity (Ecm33p and Pst1p), protein folding (Ssa1p and Ssa2p), and glucan remodeling (Exg2p and Scw4p). Flocculation-related proteins were not identified under pressure conditions. The use of flor yeasts for sparkling wine elaboration and improvement is proposed. Further research based on the genetic engineering of wine yeast using those genes from protein biomarkers under pressure alongside the second fermentation in bottle is required to achieve improvements.

13.
Microorganisms ; 8(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796563

ABSTRACT

Sparkling wines elaboration has been studied by several research groups, but this is the first report on analysis of biological processes according to the Gene Ontology terms (GO terms) and related to proteins expressed by yeast cells during the second fermentation of sparkling wines. This work provides a comprehensive study of the most relevant biological processes in Saccharomyces cerevisiae P29, a sparkling wine strain, during the second fermentation under two conditions (without and with endogenous CO2 overpressure) in the middle and the end of second fermentation. Consequently, a proteomic analysis with the OFFGEL fractionator and protein identification with LTQ Orbitrap XL coupled to HPLC were performed. The classification of biological processes was carried out using the tools provided by the Saccharomyces Genome Database. Results indicate that a greater number of biological processes were identified under condition without CO2 overpressure and in the middle of the fermentation versus the end of the second fermentation. The biological processes highlighted under condition without CO2 overpressure in the middle of the fermentation were involved in the carbohydrate and lipid metabolic processes and catabolic and biosynthetic processes. However, under CO2 overpressure, specific protein expression in response to stress, transport, translation, and chromosome organization and specific processes were not found. At the end of fermentation, there were higher specific processes under condition without CO2 overpressure; most were related to cell division, growth, biosynthetic process, and gene transcription resulting in increased cell viability in this condition. Under CO2 overpressure condition, the most representative processes were related to translation as tRNA metabolic process, chromosome organization, mRNA processing, ribosome biogenesis, and ribonucleoprotein complex assembly, probably in response to the stress caused by the hard fermentation conditions. Therefore, a broader knowledge of the adaptation of the yeast, and its behavior under typical conditions to produce sparkling wine, might improve and favor the wine industry and the selection of yeast for obtaining a high-quality wine.

14.
Microorganisms ; 8(4)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268562

ABSTRACT

A correlation between autophagy and autolysis has been proposed in order to acceleratethe acquisition of wine organoleptic properties during sparkling wine elaboration. In this context, aproteomic analysis was carried out in two industrial Saccharomyces cerevisiae strains (P29,conventional sparkling wine strain and G1, implicated in sherry wine elaboration) with the aim ofstudying the autophagy-related proteome and comparing the effect of CO2 overpressure duringsparkling wine elaboration. In general, a detrimental effect of pressure and second fermentationdevelopment on autophagy-related proteome was observed in both strains, although it was morepronounced in flor yeast strain G1. Proteins mainly involved in autophagy regulation andautophagosome formation in flor yeast G1, and those required for vesicle nucleation and expansionin P29 strain, highlighted in sealed bottle. Proteins Sec2 and Sec18 were detected 3-fold underpressure conditions in P29 and G1 strains, respectively. Moreover, 'fingerprinting' obtained frommultivariate data analysis established differences in autophagy-related proteome between strainsand conditions. Further research is needed to achieve more solid conclusions and design strategiesto promote autophagy for an accelerated autolysis, thus reducing cost and time production, as wellas acquisition of good organoleptic properties.

15.
Microorganisms ; 8(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183073

ABSTRACT

The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.

16.
Food Chem ; 308: 125555, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31655483

ABSTRACT

Saccharomyces cerevisiae flor yeast is used for the first time in sparkling wine-making. Twenty-six oenological variables and fifty-three volatile metabolites are quantified in the middle (P = 3 bar) and at the end (P = 6 bar) of the second fermentation, carried out in open and closed bottles. A heat-map of volatiles and the fingerprints obtained for ten chemical families and ten odorant series visualize the changes for each condition. Terpenes, fatty acids and volatile phenols increased their contents by pressure effect at the end of the study by 25.0, 7.8 and 2.2%, respectively. The remaining families decrease between 17.4% and 30.1% for furanic compounds and esters in the same stage. A Principal Component Analysis established that nine volatiles are mainly affected by pressure and five by fermentation stage. The use of ethanol-tolerant flor yeasts constitutes an innovative procedure for the enhancement of the sparkling wines diversification.


Subject(s)
Carbon Dioxide/chemistry , Fermentation , Saccharomyces cerevisiae/metabolism , Wine/analysis , Carbon Dioxide/analysis , Esters/analysis , Odorants/analysis , Pressure
17.
Microorganisms ; 7(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717411

ABSTRACT

Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed.

18.
Food Chem ; 237: 1030-1040, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28763947

ABSTRACT

High quality sparkling wine made by the traditional method requires a second alcoholic fermentation of a base wine in sealed bottles, followed by an aging time in contact with yeast lees. The CO2 overpressure released during this second fermentation has an important effect on the yeast metabolism and therefore on the wine aroma composition. This study focuses on the changes in chemical composition and 43 aroma compounds released by yeast during this fermentation carried out under two pressure conditions. The data were subjected to statistical analysis allowing differentiating between the base wine and the wine samples taken in the middle and at the end of fermentation. The differentiation among wines obtained to the end of fermentation with or without CO2 pressure is only achieved by a principal component analysis of 15 selected minor compounds (mainly ethyl dodecanoate, ethyl tetradecanoate, hexyl acetate, ethyl butanoate and ethyl isobutanoate).


Subject(s)
Wine , Carbon Dioxide , Fermentation , Odorants , Pressure , Saccharomyces cerevisiae , Yeast, Dried
19.
Int J Mol Sci ; 18(4)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28350350

ABSTRACT

Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.


Subject(s)
Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Biofilms , Gene Expression Regulation, Fungal , Gene Ontology , Metabolic Networks and Pathways , Saccharomyces cerevisiae/metabolism
20.
Food Chem ; 213: 90-97, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27451159

ABSTRACT

The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers.


Subject(s)
Color , Ethanol/chemistry , Flavoring Agents/analysis , Saccharomyces cerevisiae/growth & development , Smell , Vitis/chemistry , Wine/analysis , Food Handling , Odorants/analysis , Saccharomyces cerevisiae/metabolism , Wine/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...