Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979638

ABSTRACT

Cytokinins (CKs) are phytohormones structurally similar to purines that play important roles in various aspects of plant physiology and development. The local and long-distance distribution of CKs is very important to control their action throughout the plant body. Over the past decade, several novel CK transporters have been described, many of which have been linked to a physiological function rather than simply their ability to transport the hormone in vitro. Purine permeases, equilibrative nucleotide transporters and ATP-binding cassette transporters are involved in the local and long-range distribution of CK. In addition, members of the Arabidopsis AZA-GUANINE RESISTANT (AZG) protein family, AZG1 and AZG2, have recently been shown to mediate CK uptake at the plasma membrane and endoplasmic reticulum. Despite sharing ∼50% homology, AZG1 and AZG2 have unique transport mechanisms, tissue-specific expression patterns, and subcellular localizations that underlie their distinct physiological functions. AZG2 is expressed in a small group of cells in the overlying tissue around the lateral root primordia, where its expression is induced by auxins and it is involved in the regulation of lateral root growth. AZG1 is ubiquitously expressed, with high levels in the division zone of the root apical meristem. Here, it binds and stabilises the auxin efflux carrier PIN1, thereby shaping root architecture, particularly under salt stress. This review highlights the latest findings on the protein properties, transport mechanisms and cellular functions of this new family of CK transporters and discusses perspectives for future research in this field.

2.
Plant J ; 116(4): 1172-1193, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37522418

ABSTRACT

Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Photosynthesis , Protein Processing, Post-Translational , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism
3.
Biochem Soc Trans ; 51(3): 1157-1168, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37199510

ABSTRACT

Many tropical and subtropical plant lineages have independently evolved C4 photosynthesis. The convergent evolution of this complex functional trait from different ancestors is reflected in variations in the structural and biochemical characteristics of C4 components such as enzymes and cellular specializations. The mechanism of C4 carbon concentration mostly involves coordinated function of mesophyll and bundle sheath cells. Important adaptations of the C4 syndrome include increased vein density and the development of photosynthetic bundle sheath cells with low gas conductance. In addition, the enzymes and transporters of the C4 pathway evolved via the co-option of multiple genes, each derived from a specific lineage of isoforms present in nonC4-ancestors. In particular, the adaptation of C4 enzymes resulted in a variety of structural and biochemical modifications, generally leading to increased catalytic efficiency and regulation by metabolites and post-translational modifications. Differences in these adaptations are particularly evident in the C4-acid decarboxylation step, which can be catalyzed by three decarboxylases that define the C4 subtypes. Associated with the biochemical subtypes, there are also differences in the extend of grana staking and localization of bundle sheath cells chloroplasts. The presence of a suberin layer and symplastic connections also likely vary among the different C4-subtypes. This review examines the current understanding of the diversity of structural and functional changes in key components of the C4 carbon concentration mechanism. This knowledge is necessary not only to identify divergent solutions for convergent optimization of C4 components in different C4 lineages, but also to guide their creation for rational synthetic biology approaches.


Subject(s)
Photosynthesis , Plant Leaves , Plant Leaves/metabolism , Photosynthesis/physiology , Chloroplasts/metabolism , Plants/metabolism , Carbon/metabolism
4.
Plant J ; 114(5): 1059-1079, 2023 06.
Article in English | MEDLINE | ID: mdl-37029527

ABSTRACT

The flexibility of plant growth, development and stress responses is choreographed by an intricate network of signaling cascades and genetic programs. However, it is metabolism that ultimately executes these programs through the selective delivery of specific building blocks and energy. Photosynthetic carbon fixation is the central pillar of the plant metabolic network, the functioning of which is conditioned by environmental fluctuations. Hence, regulation of carbon assimilation metabolism must be particularly versatile and rapid to maintain efficiency and avoid dysfunction. While changes in gene expression can adjust the global inventory and abundance of relevant proteins, their specific characteristics are dynamically altered at the post-translational level. Here we highlight studies that show the extent of the regulatory impact by post-translational modification (PTM) on carbon assimilation metabolism. We focus on examples for which there has been empirical evidence of functional changes associated with a PTM, rather than just the occurrence of PTMs at specific sites in proteins, as regularly detected in proteomic studies. The examples indicate that we are only at the beginning of deciphering the PTM-based regulatory network that operates in plant cells. However, it is becoming increasingly clear that targeted exploitation of PTM engineering has the potential to control the metabolic flux landscape as a prerequisite for increasing crop yields, modifying metabolite composition, optimizing stress tolerance, and even executing novel growth and developmental programs.


Subject(s)
Carbon , Proteomics , Carbon/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Metabolic Networks and Pathways
5.
New Phytol ; 238(5): 1924-1941, 2023 06.
Article in English | MEDLINE | ID: mdl-36918499

ABSTRACT

An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinins , Membrane Transport Proteins , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Sodium Chloride
6.
Plant Physiol ; 191(2): 1214-1233, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36423222

ABSTRACT

Reactive carbonyl species (RCS) such as methylglyoxal (MGO) and glyoxal (GO) are highly reactive, unwanted side-products of cellular metabolism maintained at harmless intracellular levels by specific scavenging mechanisms.MGO and GO are metabolized through the glyoxalase (GLX) system, which consists of two enzymes acting in sequence, GLXI and GLXII. While plant genomes encode a number of different GLX isoforms, their specific functions and how they arose during evolution are unclear. Here, we used Arabidopsis (Arabidopsis thaliana) as a model species to investigate the evolutionary history of GLXI and GLXII in plants and whether the GLX system can protect plant cells from the toxicity of RCS other than MGO and GO. We show that plants possess two GLX systems of different evolutionary origins and with distinct structural and functional properties. The first system is shared by all eukaryotes, scavenges MGO and GO, especially during seedling establishment, and features Zn2+-type GLXI proteins with a metal cofactor preference that were present in the last eukaryotic common ancestor. GLXI and GLXII of the second system, featuring Ni2+-type GLXI, were acquired by the last common ancestor of Viridiplantae through horizontal gene transfer from proteobacteria and can together metabolize keto-D-glucose (KDG, glucosone), a glucose-derived RCS, to D-gluconate. When plants displaying loss-of-function of a Viridiplantae-specific GLXI were grown in KDG, D-gluconate levels were reduced to 10%-15% of those in the wild type, while KDG levels showed an increase of 48%-67%. In contrast to bacterial GLXI homologs, which are active as dimers, plant Ni2+-type GLXI proteins contain a domain duplication, are active as monomers, and have a modified second active site. The acquisition and neofunctionalization of a structurally, biochemically, and functionally distinct GLX system indicates that Viridiplantae are under strong selection to detoxify diverse RCS.


Subject(s)
Arabidopsis , Lactoylglutathione Lyase , Magnesium Oxide , Lactoylglutathione Lyase/chemistry , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Protein Isoforms/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
7.
J Plant Physiol ; 272: 153685, 2022 May.
Article in English | MEDLINE | ID: mdl-35364488

ABSTRACT

Increasing crop productivity to ensure food security for future generations is one of the greatest challenges in current plant research. This challenge is even greater due to global climate changes, as enhancing crop yields must occur against the backdrop of increasingly changing environments, particularly rising temperatures and water constraints. Global crop yield growth depends on an improved dynamic balance between carbon and water usage. Here we discuss different approaches that highlight the role of vascular tissue and guard cells in attempting to mitigate the carbon-water trade-off. We argue that crop engineering in the future will require the incorporation of a combination of improved traits. Since targeted gene modifications generally produce fewer undesirable pleiotropic effects than constitutive modifications, we envision that modifications of specific cell types, such as phloem companion cells and guard cells, represent an effective approach for adding beneficial gene modifications in the same plant. This approach will enable trait stacking to design future crops with both high yield and resilience to various climate change stresses.


Subject(s)
Carbon , Crops, Agricultural , Climate Change , Crop Production , Crops, Agricultural/genetics , Water
8.
Plant Cell Rep ; 41(4): 961-977, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064799

ABSTRACT

KEY MESSAGE: Analysis of carotenoid-accumulating roots revealed that oxidative carotenoid degradation yields glyoxal and methylglyoxal. Our data suggest that these compounds are detoxified via the glyoxalase system and re-enter primary metabolic pathways. Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent metabolization pathways remain unresolved. Interestingly, we found that carotenoid-accumulating roots have increased levels of glutathione, suggesting apocarotenoid glutathionylation to occur. In vitro and in planta investigations did not, however, support the occurrence of non-enzymatic or enzymatic glutathionylation of ß-apocarotenoids. An alternative breakdown pathway is the continued oxidative degradation of primary apocarotenoids or their derivatives into the shortest possible oxidation products, namely glyoxal and methylglyoxal, which also accumulated in carotenoid-accumulating roots. In fact, combined transcriptome and metabolome analysis suggest that the high levels of glutathione are most probably required for detoxifying apocarotenoid-derived glyoxal and methylglyoxal via the glyoxalase pathway, yielding glycolate and D-lactate, respectively. Further transcriptome analysis suggested subsequent reactions involving activities associated with photorespiration and the peroxisome-specific glycolate/glyoxylate transporter. Finally, detoxified primary apocarotenoid degradation products might be converted into pyruvate which is possibly re-used for the synthesis of carotenoid biosynthesis precursors. Our findings allow to envision carbon recycling during carotenoid biosynthesis, degradation and re-synthesis which consumes energy, but partially maintains initially fixed carbon via re-introducing reactive carotenoid degradation products into primary metabolic pathways.


Subject(s)
Carbon , Pyruvaldehyde , Carotenoids/metabolism , Glutathione/metabolism , Metabolic Networks and Pathways
9.
Plant J ; 109(1): 92-111, 2022 01.
Article in English | MEDLINE | ID: mdl-34713507

ABSTRACT

Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.


Subject(s)
Embryophyta/enzymology , Malate Dehydrogenase/metabolism , Protein Processing, Post-Translational , Acetylation , Embryophyta/genetics , Lysine/metabolism , Malate Dehydrogenase/genetics , Mitochondria/enzymology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Plant Cell ; 34(1): 597-615, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34734993

ABSTRACT

In plant mitochondria, nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) has a housekeeping function in malate respiration. In different plant lineages, NAD-ME was independently co-opted in C4 photosynthesis. In the C4 Cleome species, Gynandropsis gynandra and Cleome angustifolia, all NAD-ME genes (NAD-MEα, NAD-MEß1, and NAD-MEß2) were affected by C4 evolution and are expressed at higher levels than their orthologs in the C3 species Tarenaya hassleriana. In T. hassleriana, the NAD-ME housekeeping function is performed by two heteromers, NAD-MEα/ß1 and NAD-MEα/ß2, with similar biochemical properties. In both C4 species, this role is restricted to NAD-MEα/ß2. In the C4 species, NAD-MEα/ß1 is exclusively present in the leaves, where it accounts for most of the enzymatic activity. Gynandropsis gynandra NAD-MEα/ß1 (GgNAD-MEα/ß1) exhibits high catalytic efficiency and is differentially activated by the C4 intermediate aspartate, confirming its role as the C4-decarboxylase. During C4 evolution, NAD-MEß1 lost its catalytic activity; its contribution to the enzymatic activity results from a stabilizing effect on the associated α-subunit and the acquisition of regulatory properties. We conclude that in bundle sheath cell mitochondria of C4 species, the functions of NAD-ME as C4 photosynthetic decarboxylase and as a housekeeping enzyme coexist and are performed by isoforms that combine the same α-subunit with differentially adapted ß-subunits.


Subject(s)
Capparaceae/enzymology , Evolution, Molecular , Malate Dehydrogenase/chemistry , Plant Proteins/chemistry , Adaptation, Biological , Cleome/enzymology , Malate Dehydrogenase/metabolism , Mitochondria/metabolism , Plant Proteins/metabolism
12.
Plants (Basel) ; 10(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579478

ABSTRACT

Plants are frequently exposed to simultaneous abiotic and biotic stresses, a condition that induces complex responses, negatively affects crop productivity and is becoming more exacerbated with current climate change. In this study, we investigated the effects of individual and combined heat and osmotic stresses on Arabidopsis susceptibility to the biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic pathogen Botrytiscinerea (Bc). Our data showed that combined abiotic and biotic stresses caused an enhanced negative impact on plant disease resistance in comparison with individual Pst and Bc infections. Pretreating plants with individual heat or combined osmotic-heat stress strongly reduced the expression of many defense genes including pathogenesis-related proteins (PR-1 and PR-5) and the TN-13 gene encoding the TIR-NBS protein, which are involved in disease resistance towards Pst. We also found that combined osmotic-heat stress caused high plant susceptibility to Bc infection and reduced expression of a number of defense genes, including PLANT DEFENSIN 1.3 (PDF1.3), BOTRYTIS SUSCEPTIBLE 1 (BOS1) and THIONIN 2.2 (THI2.2) genes, which are important for disease resistance towards Bc. The impaired disease resistance against both Pst and Bc under combined abiotic stress is associated with reduced expression of cell wall-related genes. Taken together, our data emphasize that the combination of global warming-associated abiotic stresses such as heat and osmotic stresses makes plants more susceptible to pathogen infection, thus threatening future global food security.

13.
J Exp Bot ; 72(6): 2181-2195, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33159788

ABSTRACT

Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT. We identified the CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcription cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLH genes of group Ib, and POPEYE (PYE); however, H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Iron/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide , Plant Roots/metabolism
14.
New Phytol ; 229(2): 979-993, 2021 01.
Article in English | MEDLINE | ID: mdl-33070379

ABSTRACT

Cytokinin and auxin are key regulators of plant growth and development. During the last decade transport mechanisms have turned out to be the key for the control of local and long-distance hormone distributions. In contrast with auxin, cytokinin transport is poorly understood. Here, we show that Arabidopsis thaliana AZG2, a member of the AZG purine transporter family, acts as cytokinin transporter involved in root system architecture determination. Even though purines are substrates for both AZG1 and AZG2, we found distinct transport mechanisms. The expression of AZG2 is restricted to a small group of cells surrounding the lateral root (LR) primordia and induced by auxins. Compared to the wild-type (WT), mutants carrying loss-of-function alleles of AZG2 have higher LR density, suggesting that AZG2 is part of a regulatory pathway in LR emergence. Moreover, azg2 is partially insensitive to exogenous cytokinin, which is consistent with the observation that the cytokinin reporter TCSnpro :GFP showed lower fluorescence signal in the roots of azg2 compared to the WT. These results indicate a defective cytokinin signalling pathway in the region of LR primordia. The integration of AZG2 subcellular localization and cytokinin transport capacity data allowed us to propose a local cytokinin : auxin signalling model for the regulation of LR emergence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinins/metabolism , Plant Roots/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids
15.
Planta ; 252(6): 100, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33170407

ABSTRACT

MAIN CONCLUSION: The biochemical characterization of glycolate oxidase in Ricinus communis hints to different physiological functions of the enzyme depending on the organ in which it is active. Enzymatic activities of the photorespiratory pathway are not restricted to green tissues but are present also in heterotrophic organs. High glycolate oxidase (GOX) activity was detected in the endosperm of Ricinus communis. Phylogenetic analysis of the Ricinus L-2-hydroxy acid oxidase (Rc(L)-2-HAOX) family indicated that Rc(L)-2-HAOX1 to Rc(L)-2-HAOX3 cluster with the group containing streptophyte long-chain 2-hydroxy acid oxidases, whereas Rc(L)-2-HAOX4 clusters with the group containing streptophyte GOX. Rc(L)-2-HAOX4 is the closest relative to the photorespiratory GOX genes of Arabidopsis. We obtained Rc(L)-2-HAOX4 as a recombinant protein and analyze its kinetic properties in comparison to the Arabidopsis photorespiratory GOX. We also analyzed the expression of all Rc(L)-2-HAOXs and conducted metabolite profiling of different Ricinus organs. Phylogenetic analysis indicates that Rc(L)-2-HAOX4 is the only GOX encoded in the Ricinus genome (RcGOX). RcGOX has properties resembling those of the photorespiratory GOX of Arabidopsis. We found that glycolate, the substrate of GOX, is highly abundant in non-green tissues, such as roots, embryo of germinating seeds and dry seeds. We propose that RcGOX fulfills different physiological functions depending on the organ in which it is active. In autotrophic organs it oxidizes glycolate into glyoxylate as part of the photorespiratory pathway. In fast growing heterotrophic organs, it is most probably involved in the production of serine to feed the folate pathway for special demands of those tissues.


Subject(s)
Alcohol Oxidoreductases , Genome, Plant , Photosynthesis , Ricinus , Alcohol Oxidoreductases/genetics , Genome, Plant/genetics , Photosynthesis/genetics , Phylogeny , Ricinus/classification , Ricinus/enzymology , Ricinus/genetics
16.
Front Plant Sci ; 11: 572080, 2020.
Article in English | MEDLINE | ID: mdl-33123181

ABSTRACT

In different lineages of C4 plants, the release of CO2 by decarboxylation of a C4 acid near rubisco is catalyzed by NADP-malic enzyme (ME) or NAD-ME, and the facultative use of phosphoenolpyruvate carboxykinase. The co-option of gene lineages during the evolution of C4-NADP-ME has been thoroughly investigated, whereas that of C4-NAD-ME has received less attention. In this work, we aimed at elucidating the mechanism of recruitment of NAD-ME for its function in the C4 pathway by focusing on the eudicot family Cleomaceae. We identified a duplication of NAD-ME in vascular plants that generated the two paralogs lineages: α- and ß-NAD-ME. Both gene lineages were retained across seed plants, and their fixation was likely driven by a degenerative process of sub-functionalization, which resulted in a NAD-ME operating primarily as a heteromer of α- and ß-subunits. We found most angiosperm genomes maintain a 1:1 ß-NAD-ME/α-NAD-ME (ß/α) relative gene dosage, but with some notable exceptions mainly due to additional duplications of ß-NAD-ME subunits. For example, a significantly high proportion of species with C4-NAD-ME-type photosynthesis have a non-1:1 ratio of ß/α. In the Brassicales, we found C4 species with a 2:1 ratio due to a ß-NAD-ME duplication (ß1 and ß2); this was also observed in the C3 Tarenaya hassleriana and Brassica crops. In the independently evolved C4 species, Gynandropsis gynandra and Cleome angustifolia, all three genes were affected by C4 evolution with α- and ß1-NAD-ME driven by adaptive selection. In particular, the ß1-NAD-MEs possess many differentially substituted amino acids compared with other species and the ß2-NAD-MEs of the same species. Five of these amino acids are identically substituted in ß1-NAD-ME of G. gynandra and C. angustifolia, two of them were identified as positively selected. Using synteny analysis, we established that ß-NAD-ME duplications were derived from ancient polyploidy events and that α-NAD-ME is in a unique syntenic context in both Cleomaceae and Brassicaceae. We discuss our hypotheses for the evolution of NAD-ME and its recruitment for C4 photosynthesis. We propose that gene duplications provided the basis for the recruitment of NAD-ME in C4 Cleomaceae and that all members of the NAD-ME gene family have been adapted to fit the C4-biochemistry. Also, one of the ß-NAD-ME gene copies was independently co-opted for its function in the C4 pathway.

17.
J Exp Bot ; 71(16): 5098-5112, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32442250

ABSTRACT

Environmental stresses such as drought, heat, and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolite level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are up-regulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Salinity , Stress, Physiological
18.
Plant J ; 101(2): 420-441, 2020 01.
Article in English | MEDLINE | ID: mdl-31520498

ABSTRACT

Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondria/metabolism , Organelles/metabolism , Proteomics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Databases, Protein , Mitochondria/genetics , Organelle Biogenesis , Organelles/genetics , Proteome/metabolism
19.
New Phytol ; 226(1): 189-204, 2020 04.
Article in English | MEDLINE | ID: mdl-31749193

ABSTRACT

Arabidopsis plants overexpressing glycolate oxidase in chloroplasts (GO5) and loss-of-function mutants of the major peroxisomal catalase isoform, cat2-2, produce increased hydrogen peroxide (H2 O2 ) amounts from the respective organelles when subjected to photorespiratory conditions like increased light intensity. Here, we have investigated if and how the signaling processes triggered by H2 O2 production in response to shifts in environmental conditions and the concomitant induction of indole phytoalexin biosynthesis in GO5 affect susceptibility towards the hemibiotrophic fungus Colletotrichum higginsianum. Combining histological, biochemical, and molecular assays, we found that the accumulation of the phytoalexin camalexin was comparable between GO genotypes and cat2-2 in the absence of pathogen. Compared with wild-type, GO5 showed improved resistance after light-shift-mediated production of H2 O2 , whereas cat2-2 became more susceptible and allowed significantly more pathogen entry. Unlike GO5, cat2-2 suffered from severe oxidative stress after light shifts, as indicated by glutathione pool size and oxidation state. We discuss a connection between elevated oxidative stress and dampened induction of salicylic acid mediated defense in cat2-2. Genetic analyses demonstrated that induced resistance of GO5 is dependent on WRKY33, but not on camalexin production. We propose that indole carbonyl nitriles might play a role in defense against C. higginsianum.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Colletotrichum , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Colletotrichum/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
20.
Biochem Soc Trans ; 47(6): 1805-1813, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31754693

ABSTRACT

Current crop yields will not be enough to sustain today's diets for a growing global population. As plant photosynthetic efficiency has not reached its theoretical maximum, optimizing photosynthesis is a promising strategy to enhance plant productivity. The low productivity of C3 plants is caused in part by the substantial energetic investments necessary to maintain a high flux through the photorespiratory pathway. Accordingly, lowering the energetic costs of photorespiration to enhance the productivity of C3 crops has been a goal of synthetic plant biology for decades. The use of synthetic bypasses to photorespiration in different plants showed an improvement of photosynthetic performance and growth under laboratory and field conditions, even though in silico predictions suggest that the tested synthetic pathways should confer a minimal or even negative energetic advantage over the wild type photorespiratory pathway. Current strategies increasingly utilize theoretical modeling and new molecular techniques to develop synthetic biochemical pathways that bypass photorespiration, representing a highly promising approach to enhance future plant productivity.


Subject(s)
Crops, Agricultural/physiology , Photosynthesis , Biochemical Phenomena , Carbon Dioxide/metabolism , Plant Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...