Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38847163

ABSTRACT

Motor neuron disorders are diseases that can be passed through generations by heredity or they occur due to spontaneous mutations in the gene. These are the disorders that weaken the connection between motor neurons and the muscles, due to this the coordination between the neurons and muscles gets disturbed and thereby the actions become abnormal, every year millions of people around the world suffer from these different types of motor neuron disorders. Till now there is no proper known treatment for this type of disorder, there is active research work going on to treat these diseases permanently. Some gene therapy treatments are giving promising results in the treatment of these diseases, specifically, genetic modification techniques are the front liners, and many types of nucleases are doing their work to replace the mutated gene with a functional one. Zinc finger nucleases (ZFNs) are one of them with good disease treatment potential with accurate and desirable effects. In this review, we note the complete information about ZFNs and their drawbacks along with their future prospective in gene therapy and also shortly with other types of nucleases-mediated gene therapies. There also some factors that influence the gene therapy treatment are also noted along with some detailed information.

3.
Nanomaterials (Basel) ; 9(2)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791417

ABSTRACT

Gold films are widely used for different applications. We present the results of third- and high-order nonlinear optical studies of the thin films fabricated from Au nanoparticle solutions by spin-coating methods. These nanoparticles were synthesized by laser ablation of bulk gold in pure water using 200 ps, 800 nm pulses. The highest values of the nonlinear absorption coefficient (9 × 10-6 cm W-1), nonlinear refractive index (3 × 10-11 cm² W-1), and saturation intensity (1.3 × 1010 W cm-2) were achieved using 35 fs, 400 nm pulses. We also determined the relaxation time constants for transient absorption (220 fs and 1.6 ps) at 400 nm. The high-order harmonic generation was studied during propagation of 35 fs, 800 nm pulses through the plasma during the ablation of gold nanoparticle film and bulk gold. The highest harmonic cutoff (29th order) was observed in the plasma containing gold nanoparticles.

4.
Opt Express ; 26(17): 21615-21625, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130865

ABSTRACT

We report the real-time observation of entire structural change in dye-doped semi-crystalline polymer (polyethylene) films through mid-IR transmission spectroscopy. The laser-heated dye molecules heat the polymer film through thermal diffusion, and accordingly the polymer film undergoes the structural change from the crystalline to amorphous structures, which is followed by the reverse structural change, namely recrystallization, during the natural cooling. By tuning the mid-IR probe pulse to one of the few structure-sensitive vibrational modes and varying the time delay between the pump and probe pulses we can monitor the structural change of the polymer film and time-varying film temperature during recrystallization through the transmission change of the resonant mid-IR probe pulse with the time-resolution of sub-µs.

5.
J Fluoresc ; 27(6): 2279-2286, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28840438

ABSTRACT

We report a structure of ferrocene-pyrene conjugate (1) comprising electro and photo-active dual-signaling units. In particular, 1 upon interaction with Cu(II), displays selectively one-photon fluorescence quenching, but it shows two-photon absorption (TPA) cross-section 1230 GM (at 780 nm). Further, 1 displayed two irreversible oxidative waves at 0.39 V and 0.80 V (vs Ag/AgCl), in the electrochemical analysis which upon addition of Cu2+, led to the negative potential shift in both the oxidative waves to appear at 0.25 V and 0.68 V. The triple mode changes in presence of Cu(II) suggesting the possible application of 1 for the detection of Cu(II) in aqueous media. Graphical Abstract.

6.
J Fluoresc ; 27(4): 1399-1403, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28401413

ABSTRACT

We have investigated the concentration dependent of two-photon induced fluorescence (TPIF) in methanolic solution of Rhodamine 6G and Rhodamine B dye using 120 fs laser pulses at 780 nm, 76 MHz repetition rate. TPIF study of these dyes was compared with their respective one photon fluorescence intensity. We have shown the effect of chopper on TPIF intensity from Rhodamine dyes, which have shown direct influence on the determined TPA Cross section of these dyes.

7.
Sci Rep ; 6: 36811, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27853234

ABSTRACT

Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

8.
Appl Spectrosc ; 70(10): 1655-1661, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27296307

ABSTRACT

Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔTP-V) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid.

9.
J Fluoresc ; 26(5): 1573-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27324955

ABSTRACT

We investigate the effect of cetyl-trimethyl-ammonium-bromides (CTAB) concentration on the fluorescence of Rhodamine-6G in water. This spectroscopic study of Rhodamine-6G in presence of CTAB was performed using two-photon-induced-fluorescence at 780 nm wavelength using high repetition rate femtosecond laser pulses. We report an increment of ∼10 % in the fluorescence in accordance with ∼12 % enhancement in the absorption intensity of the dye molecule around the critical micellar concentration. We discuss the possible mechanism for the enhancement in the two-photon fluorescence intensity and the importance of critical micellar concentration.

10.
3 Biotech ; 4(1): 67-75, 2014 Feb.
Article in English | MEDLINE | ID: mdl-28324464

ABSTRACT

In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates. Structural properties of the graphene oxide were analyzed using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, and Raman spectroscopy. The oxidized sample shows remarkable fluorescence, multi-photon imaging and magnetic properties. On increasing the excitation wavelength, the fluorescence emission intensity of the graphene oxide also increases and found maximum emission at 380 nm excitation wavelength. On studying the two photon absorption (TPA) property of aqueous graphene oxide using Z-scan technique, we found significant TPA activity at near infrared wavelength. In addition, the graphene oxide shows ferromagnetic behavior at room temperature. The observed fluorescence and magnetic property were attributed to the defects caused in the graphene oxide structure by introducing oxygen containing hydrophilic groups during the oxidation process. Previously silk cocoon has been used extensively in deriving silk-based tissue engineering materials and as gas filter. Here we show a novel application of silk cocoon by synthesizing graphene oxide based magnetic-fluorophore for bio-imaging applications.

12.
Inorg Chem ; 49(9): 4008-16, 2010 May 03.
Article in English | MEDLINE | ID: mdl-20302274

ABSTRACT

A phosphorus-supported multidentate ligand (S)P[N(Me)N=CH-C(6)H(3)-2-OH-4-N(CH (2)CH(3))(2)](3) (1) has been used to prepare mononuclear complexes LM [M = Fe (2) Co (3)] and trinuclear complexes L(2)M(3) [M = Mn (4), Ni (5), Zn (6), Mg (7), Cd (8)]. In both 2 and 3 the ligand binds the metal ion in a facial coordination mode utilizing three imino nitrogen (3N) and three phenolic oxygen (3O) atoms. The molecular structures of L(2)Mn(3), L(2)Ni(3), L(2)Zn(3), L(2)Mg(3), and L(2)Cd(3) (4-8) are similar; two trihydrazone ligands are involved in coordination to hold the three metal ions in a linear fashion. Each of the trishydrazone ligands behaves as a trianionic hexadentate ligand providing three imino and three phenolic oxygen atoms for coordination to the metal ions. The coordination environment around the two terminal metal ions is similar (3N, 3O) while the central metal ion has a 6O coordination environment. Third-order non-linear optical properties of these compounds as measured by their two-photon absorption (TPA) cross section reveals that while 1 does not possess obvious TPA activity, complexes 2 (3213 GM) and 4 (3516 GM) possess a large TPA cross section at 770 nm.


Subject(s)
Hydrazones/chemistry , Hydrazones/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Organophosphorus Compounds/chemistry , Photons , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...