Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(10): 759-770, 2023 03.
Article in English | MEDLINE | ID: mdl-36624189

ABSTRACT

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology. The Muc4 depletion in the autochthonous murine model carrying K-ras and p53 mutations (K-rasG12D; TP53R172H; Pdx-1cre, KPC) to generate the KPCM4-/- murine model showed a significant delay in the PanIN lesion formation with a significant reduction (p < 0.01) in EGFR (Y1068) and ERK1/2 (T202/Y204) phosphorylation. Further, a significant decrease (p < 0.01) in Sox9 expression in PanIN lesions of KPCM4-/- mice suggested the impairment of acinar-to-ductal metaplasia in Muc4-depleted cells. The biochemical analyses demonstrated that MUC4, through its juxtamembrane EGF-like domains, interacts with the EGFR ectodomain, and its cytoplasmic tail prevents EGFR ubiquitination and subsequent proteasomal degradation upon ligand stimulation, leading to sustained downstream oncogenic signaling. Targeting the MUC4 and EGFR interacting interface provides a promising strategy to improve the efficacy of EGFR-targeted therapies in PDAC and other MUC4-expressing malignancies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Phosphorylation , Disease Models, Animal , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Carcinogenesis , ErbB Receptors/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
2.
Front Microbiol ; 13: 891870, 2022.
Article in English | MEDLINE | ID: mdl-35958149

ABSTRACT

The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 µg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 µg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 µg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 µg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 µg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 µg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL-1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t 1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.

3.
Acta Neuropathol Commun ; 9(1): 195, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922631

ABSTRACT

Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.


Subject(s)
Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Medulloblastoma/metabolism , MicroRNAs/metabolism , NFI Transcription Factors/metabolism , Animals , Cells, Cultured , Cerebellar Neoplasms/genetics , Disease Models, Animal , Humans , Medulloblastoma/genetics , Mice , MicroRNAs/genetics , NFI Transcription Factors/genetics
4.
PLoS One ; 16(12): e0261338, 2021.
Article in English | MEDLINE | ID: mdl-34914805

ABSTRACT

In recent times, injudicious use of paclobutrazol (PBZ) in mango orchards deteriorates the soil quality and fertility by persistence nature and causes a serious ecosystem imbalance. In this study, a new Klebsiella pneumoniae strain M6 (MW228061) was isolated from mango rhizosphere and characterized as a potent plant growth promoter, biocontrol, and PBZ degrading agent. The strain M6 efficiently utilizes PBZ as carbon, energy and nitrogen source and degrades up to 98.28% (50 mgL-1 initial conc.) of PBZ at 15th day of incubation in MS medium. In the soil system first order degradation kinetics and linear model suggested 4.5 days was the theoretical half-life (t1/2 value) of PBZ with strain M6. Box Behnken design (BBD) model of Response surface methodology (RSM) showed pH 7.0, 31°C temperature, and 2.0 ml inoculum size (8 x 109 CFU mL-1) was optimized condition for maximum PBZ degradation with strain M6. Plant growth promoting attributes such as Zn, K, PO4 solubilization IAA, HCN and NH3 production of strain M6 showed positive results and were assessed quantitatively. The relation between plant growth promotion and PBZ degradation was analyzed by heat map, principal component analysis (PCA) and, clustal correlation analysis (CCA). Strain M6 was also showing a significant biocontrol activity against pathogenic fungi such as Fusarium oxysporum (MTCC-284), Colletotrichum gloeosporioides (MTCC- 2190), Pythium aphanidermatum (MTCC- 1024), Tropical race 1 (TR -1), and Tropical race 4 (TR -4). Hence, results of the study suggested that strain M6 can be utilized as an effective bio-agent to restore degraded land affected by persistent use of paclobutrazol.


Subject(s)
Biodegradation, Environmental/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/metabolism , Ecosystem , Plant Development/drug effects , Plant Growth Regulators/metabolism , Rhizosphere , Soil/chemistry , Soil Microbiology , Triazoles/adverse effects
5.
Cancers (Basel) ; 12(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-33019652

ABSTRACT

Brain metastasis (BrM) remains a significant cause of cancer-related mortality in epidermal growth factor receptor 2-positive (ERBB2+) breast cancer (BC) patients. We proposed here that a combination treatment of irreversible tyrosine kinase inhibitor neratinib (NER) and the c-MET inhibitor cabozantinib (CBZ) could prevent brain metastasis. To address this, we first tested the combination treatment of NER and CBZ in the brain-seeking ERBB2+ cell lines SKBrM3 and JIMT-1-BR3, and in ERBB2+ organoids that expressed the c-MET/ERBB1 axis. Next, we developed and characterized an orthotopic mouse model of spontaneous BrM and evaluated the therapeutic effect of CBZ and NER in vivo. The combination treatment of NER and CBZ significantly inhibited proliferation and migration in ERBB2+ cell lines and reduced the organoid growth in vitro. Mechanistically, the combination treatment of NER and CBZ substantially inhibited ERK activation downstream of the c-MET/ERBB1 axis. Orthotopically implanted SKBrM3+ cells formed primary tumor in the mammary fat pad and spontaneously metastasized to the brain and other distant organs. Combination treatment with NER and CBZ inhibited primary tumor growth and predominantly prevented BrM. In conclusion, the orthotopic model of spontaneous BrM is clinically relevant, and the combination therapy of NER and CBZ might be a useful approach to prevent BrM in BC.

6.
Biochem Pharmacol ; 164: 34-44, 2019 06.
Article in English | MEDLINE | ID: mdl-30885766

ABSTRACT

Liraglutide (Lira), a long-acting glucagon-like peptide 1 receptor (GLP1R) agonist reduces glycosylated hemoglobin in type 2 diabetes mellitus patients. Lira is reported to have bone conserving effect in ovariectomized (OVX) rats. Here, we investigated the osteoanabolic effect of Lira and studied the underlying mechanism. In established osteopenic OVX rats, Lira completely restored bone mass and strength comparable to parathyroid hormone (PTH 1-34). Body mass index normalized bone mineral density of Lira was higher than PTH. The serum levels of osteogenic surrogate pro-collagen type 1 N-terminal pro-peptide (P1NP) and surface referent bone formation parameters were comparable between Lira and PTH. GLP1R, adiponectin receptor 1 (AdipoR1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) levels in bones were downregulated in the OVX group but restored in the Lira group whereas PTH had no effect. In cultured osteoblasts, Lira time-dependently increased GLP1R, AdipoR1 and PGC1α expression. In osteoblasts, Lira rapidly phosphorylated AMP-dependent protein kinase (AMPK), the cellular energy sensor. Exendin 3, a selective GLP1R antagonist and PKA inhibitor H89 blocked Lira-induced increases in osteoblast differentiation, and expression levels of AdipoR1 and PGC1α. Furthermore, H89 inhibited Lira-induced phosphorylation of AMPK and dorsomorphin, an AMPK inhibitor blocked the Lira-induced increases in osteoblast differentiation and AdipoR1 and PGC1α levels. Lira increased mitochondrial number, respiratory proteins and respiration in osteoblasts in vitro and in vivo, and blocking mitochondrial respiration mitigated Lira-induced osteoblast differentiation. Taken together, our data show that Lira has a strong osteoanabolic effect which involves upregulation of mitochondrial function.


Subject(s)
Bone Density/drug effects , Hypoglycemic Agents/pharmacology , Liraglutide/pharmacology , Mitochondria/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Animals , Bone Density/physiology , Cells, Cultured , Female , Mitochondria/metabolism , Osteoblasts/metabolism , Osteogenesis/physiology , Ovariectomy/adverse effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...