Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Blood ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781564

ABSTRACT

We report on the first-in-human clinical trial using chimeric antigen receptor (CAR) T-cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies (clinicaltrials.gov NCT04136275). Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T-cells. CAR-37 T-cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4/5 patients. Tumor responses were observed in 4/5 patients, with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in two of these patients, efforts to ablate CAR-37 T-cells (which were engineered to co-express truncated EGFR) with cetuximab, were unsuccessful. Hematopoiesis was restored in these two patients following allogeneic hematopoietic stem cell transplantation. No other severe, non-hematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T-cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of IL-18, with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients relative to both cytopenic and non-cytopenic cohorts of CAR-19-treated cohorts of patients. In conclusion, CAR-37 T-cells exhibited anti-tumor activity, with significant CAR expansion and cytokine production. CAR-37 T-cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant.

2.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724463

ABSTRACT

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Humans , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Transgenes , T-Lymphocytes/immunology
4.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746119

ABSTRACT

The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.

5.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38588525

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Subject(s)
Cytokine Release Syndrome , Immunotherapy, Adoptive , Lymphohistiocytosis, Hemophagocytic , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Animals
6.
Cell Rep Med ; 5(4): 101491, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631291

ABSTRACT

In a recent publication, Locke et al. present data from pretreatment tumor biopsies taken on the ZUMA-7 trial. Their results identify tumor microenvironment (TME) contexts and level of CD19 expression as prognostic indicators for responses to axicabtagene ciloleucel (axi-cel).


Subject(s)
Antigens, CD19 , Tumor Microenvironment , Biopsy , Cell- and Tissue-Based Therapy
7.
Blood ; 143(20): 2099-2105, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38483155

ABSTRACT

ABSTRACT: Second primary malignancies were reported in 536 of 12 394 (4.3%) adverse event reports following chimeric antigen receptor T-cell therapies in the Food and Drug Administration Adverse Event Reporting System. Myeloid and T-cell neoplasms were disproportionately more frequently reported, warranting further follow-up.


Subject(s)
Adverse Drug Reaction Reporting Systems , Immunotherapy, Adoptive , Neoplasms, Second Primary , United States Food and Drug Administration , Humans , United States/epidemiology , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/therapy , Neoplasms, Second Primary/epidemiology , Immunotherapy, Adoptive/adverse effects , Male , Receptors, Chimeric Antigen/immunology , Female , Middle Aged , Adult , Aged
8.
Transplant Cell Ther ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38494077

ABSTRACT

The utilization of the human immune system as a therapeutic modality has materialized in the form of novel biologics known as immune effector cells (IECs). However, currently approved IECs rely on autologous cells for manufacturing that are funneled through costly centralized supply chains leading to long wait times and potentially increased mortality. Alternative models for manufacturing at or near the point-of-care in a distributed and local approach are being proposed to overcome such a bottleneck. Cell processing facilities for minimally manipulated products, as well as academic good manufacturing practice facilities, are being considered for such manufacturing tasks. However, the infrastructure and the practices of these facilities remains unstudied. Here, we surveyed the cell processing facilities accredited by the Foundation for Accreditation of Cellular Therapy (FACT) in the United States to better understand their preparedness for local manufacturing of IECs. A structured survey consisting of 40 items was distributed to the directors of 157 facilities. The survey evaluated 6 domains, including facility characteristics, quality practices, personnel, use of automation, experience with IECs, and the perception of the point-of-care model. Thirty-eight facilities completed the survey (24.2%). Most facilities were involved in handling IEC products (35/38, 92.1%), and the majority had infrastructure to support basic operations and quality control such as viability (36/36, 100%), identity (33/36, 91.7%), and sterility (33/36, 91.7%). The quality practices varied among the facilities depending on the types of products processed. A slight majority implemented automation in their workflows (22/38, 57.9%). Facilities expressed a general interest in adopting point-of-care models (23/38, 61%), with financial and human resources identified as the most significant constraints. In conclusion, FACT-accredited cell processing facilities may provide the infrastructure required for local manufacturing. However, there is a need for standardization and minimum quality requirements to effectively implement such models.

9.
N Engl J Med ; 390(14): 1290-1298, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38477966

ABSTRACT

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell-engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants. (Funded by Gateway for Cancer Research and others; INCIPIENT ClinicalTrials.gov number, NCT05660369.).


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Humans , CD8-Positive T-Lymphocytes/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/therapy , Glioblastoma/pathology , Immunotherapy, Adoptive/adverse effects , Neoplasm Recurrence, Local/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , Receptors, Chimeric Antigen/therapeutic use
10.
Article in English | MEDLINE | ID: mdl-38418432

ABSTRACT

Chimeric antigen receptor (CAR) modified T cell therapies targeting BCMA have displayed impressive activity in the treatment of multiple myeloma. There are currently two FDA licensed products, ciltacabtagene autoleucel and idecabtagene vicleucel, for treating relapsed and refractory disease. Although correlative analyses performed by product manufacturers have been reported in clinical trials, there are limited options for reliable BCMA CAR T detection assays for physicians and researchers looking to explore it as a biomarker for clinical outcome. Given the known association of CAR T cell expansion kinetics with toxicity and response, being able to quantify BCMA CAR T cells routinely and accurately in the blood of patients can serve as a valuable asset. Here, we optimized an accurate and sensitive flow cytometry test using a PE-conjugated soluble BCMA protein, with a lower limit of quantitation of 0.19% of CD3+ T cells, suitable for use as a routine assay for monitoring the frequency of BCMA CAR T cells in the blood of patients receiving either ciltacabtagene autoleucel or idecabtagene vicleucel.

11.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38393682

ABSTRACT

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Subject(s)
CD3 Complex , Endopeptidases , GPI-Linked Proteins , Immunotherapy, Adoptive , Mesothelin , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology
12.
Trends Cancer ; 10(4): 312-331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355356

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is a medical breakthrough in the treatment of B cell malignancies. There is intensive focus on developing solid tumor-targeted CAR-T cell therapies. Although clinically approved CAR-T cell therapies target B cell lineage antigens, solid tumor targets include neoantigens and tumor-associated antigens (TAAs) with diverse roles in tumor biology. Multiple early-stage clinical trials now report encouraging signs of efficacy for CAR-T cell therapies that target solid tumors. We review the landscape of solid tumor target antigens from the perspective of cancer biology and gene regulation, together with emerging clinical data for CAR-T cells targeting these antigens. We then discuss emerging synthetic biology strategies and their application in the clinical development of novel cellular immunotherapies.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Antigens, Neoplasm , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Neoplasms/genetics , Neoplasms/therapy , Biology
13.
Blood Cancer Discov ; 5(2): 86-89, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38324393

ABSTRACT

SUMMARY: Single-cell RNA sequencing has emerged as a powerful technique to understand the molecular features of chimeric antigen receptor (CAR) T cells that associate with clinical outcomes. Here we discuss the common themes that have emerged from across single-cell studies of CAR T-cell therapy, and summarize the challenges in interpreting this complex data type.


Subject(s)
Immunotherapy, Adoptive , Research Personnel , Humans
15.
Blood Adv ; 8(4): 1053-1061, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37467016

ABSTRACT

ABSTRACT: Immune effector cells (IECs) include a broad range of immune cells capable of modulating several disease states, including malignant and nonmalignant conditions. The growth in the use of IECs as both investigational and commercially available products requires medical institutions to develop workflows/processes to safely implement and deliver transformative therapy. Adding to the complexity of this therapy are the variety of targets, diseases, sources, and unique toxicities that a patient experiences following IEC therapy. For over 25 years, the Foundation for the Accreditation of Cellular Therapy (FACT) has established a standard for the use of cellular therapy, initially with hematopoietic cell transplantation (HCT), and more recently, with the development of standards to encompass IEC products such as chimeric antigen receptor (CAR)-T cells. To date, IEC therapy has challenged the bandwidth and infrastructure of the institutions offering this therapy. To address these challenges, FACT has established a programmatic framework to improve the delivery of IEC therapy. In this study, we outline the current state of IEC program development, accreditation, and solutions to the challenges that programs face as they expand their application to novel IEC therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Lymphocytes
16.
Cell Chem Biol ; 31(2): 338-348.e5, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37989314

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFß signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFß and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Immunotherapy, Adoptive/methods , Ubiquitination , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
17.
Leukemia ; 38(3): 590-600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123696

ABSTRACT

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.


Subject(s)
Interleukin-7 , Receptors, Antigen, T-Cell , Humans , Lenalidomide/pharmacology , Receptors, Antigen, T-Cell/genetics , Interleukin-7/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism , Immunotherapy, Adoptive , Cytokines/metabolism
18.
Mol Ther Oncolytics ; 31: 100751, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38075241

ABSTRACT

CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.

19.
Nat Commun ; 14(1): 8048, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052854

ABSTRACT

CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , RNA, Guide, CRISPR-Cas Systems , Immunotherapy, Adoptive , T-Lymphocytes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Tumor Microenvironment
20.
Nat Rev Drug Discov ; 22(12): 976-995, 2023 12.
Article in English | MEDLINE | ID: mdl-37907724

ABSTRACT

Chimeric antigen receptor (CAR)-T cells have recently emerged as a powerful therapeutic approach for the treatment of patients with chemotherapy-refractory or relapsed blood cancers, including acute lymphoblastic leukaemia, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma and multiple myeloma. Nevertheless, resistance to CAR-T cell therapies occurs in most patients. In this Review, we summarize the resistance mechanisms to CAR-T cell immunotherapy by analysing CAR-T cell dysfunction, intrinsic tumour resistance and the immunosuppressive tumour microenvironment. We discuss current research strategies to overcome multiple resistance mechanisms, including optimization of the CAR design, improvement of in vivo T cell function and persistence, modulation of the immunosuppressive tumour microenvironment and synergistic combination strategies.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local/etiology , T-Lymphocytes , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...