Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 12(3): e201800205, 2019 03.
Article in English | MEDLINE | ID: mdl-30302923

ABSTRACT

Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8-20 µm. In this paper, we present the first ultrahigh-resolution tethered OCT capsule operating at 800 nm and offering about 3- to 4-fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super-achromaticity and an axial resolution of ~2.6 µm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub-epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.


Subject(s)
Esophagus/diagnostic imaging , Signal-To-Noise Ratio , Tomography, Optical Coherence/instrumentation , Animals , Image Processing, Computer-Assisted , Lasers , Sheep
2.
Biomed Opt Express ; 9(8): 3731-3739, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30338151

ABSTRACT

We present the first, most compact, ultrahigh-resolution, high-speed, distal scanning optical coherence tomography (OCT) endoscope operating at 800 nm. Achieving high speed imaging while maintaining an ultrahigh axial resolution is one of the most significant challenges with endoscopic OCT at 800 nm. Maintaining an ultrahigh axial resolution requires preservation of the broad spectral bandwidth of the light source throughout the OCT system. To overcome this critical limitation we implemented a distal scanning endoscope with diffractive optics to minimize loss in spectral throughput. In this paper, we employed a customized miniature 900 µm diameter DC micromotor fitted with a micro reflector to scan the imaging beam. We integrated a customized diffractive microlens into the imaging optics to reduce chromatic focal shift over the broad spectral bandwidth of the Ti:Sapphire laser of an approximately 150 nm 3dB bandwidth, affording a measured axial resolution of 2.4 µm (in air). The imaging capability of this high-speed, ultrahigh-resolution distal scanning endoscope was validated by performing 3D volumetric imaging of mouse colon in vivo at 50 frames-per-second (limited only by the A-scan rate of linear CCD array in the spectral-domain OCT system and sampling requirements). The results demonstrated that fine microstructures of colon could be clearly visualized, including the boundary between the absorptive cell layer and colonic mucosa as well the crypt patterns. Furthermore, this endoscope was employed to visualize morphological changes in an enterotoxigenic Bacteriodes fragilis (ETBF) induced colon tumor model. We present the results of our feasibility studies and suggest the potential of this system for visualizing time dependent morphological changes associated with tumorigenesis on murine models in vivo.

3.
Opt Lett ; 42(23): 4978-4981, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216160

ABSTRACT

We report the development of a broadband rotary joint for high-speed ultrahigh-resolution endoscopic optical coherence tomography (OCT) imaging in the 800 nm spectral range. This rotary joint features a pair of achromatic doublets in order to achieve broadband operation for a 3 dB bandwidth over 150 nm. The measured one-way throughput of the rotary joint is greater than 80%, while the fluctuation of the double-pass coupling efficiency during 360 deg rotation is less than ±5% at a near video-rate speed of 20 revolutions/s (rps). The rotary joint is used in conjunction with a diffractive-optics-based endoscope and 800 nm spectral domain OCT system and achieved an ultrahigh axial resolution of ∼2.4 µm in air. The imaging performance is demonstrated by 3D circumferential imaging of a mouse colon in vivo.


Subject(s)
Endoscopy/methods , Rotation , Tomography, Optical Coherence/methods , Animals , Colon/diagnostic imaging , Endoscopy/instrumentation , Mice , Rectum/diagnostic imaging , Tomography, Optical Coherence/instrumentation
4.
J Biomed Opt ; 21(8): 081211, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27335154

ABSTRACT

The imaging depth of optical coherence tomography (OCT) in highly scattering biological tissues (such as luminal organs) is limited, particularly for OCT operating at shorter wavelength regions (such as around 800 nm). For the first time, the optical clearing effect of the mixture of liquid paraffin and glycerol on luminal organs was explored with ultrahigh-resolution spectral domain OCT at 800 nm. Ex vivo studies were performed on pig esophagus and bronchus, and guinea pig esophagus with different volume ratios of the mixture. We found that the mixture of 40% liquid paraffin had the best optical clearing effect on esophageal tissues with a short effective time of ∼ 10 min, which means the clearing effect occurs about 10 min after the application of the clearing agent. In contrast, no obvious optical clearing effect was identified on bronchus tissues.


Subject(s)
Bronchi/diagnostic imaging , Contrast Media/chemistry , Esophagus/diagnostic imaging , Tomography, Optical Coherence/methods , Animals , Bronchi/drug effects , Contrast Media/pharmacology , Esophagus/drug effects , Guinea Pigs , Swine
5.
Opt Lett ; 41(2): 250-3, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766686

ABSTRACT

We investigated the optimal operational conditions for utilizing a broadband supercontinuum (SC) source in a portable 800 nm spectral-domain (SD) endoscopic OCT system to enable high resolution, high-sensitivity, and high-speed imaging in vivo. A SC source with a 3-dB bandwidth of ∼246 nm was employed to obtain an axial resolution of ∼2.7 µm (in air) and an optimal detection sensitivity of ∼-107 dB with an imaging speed up to 35 frames/s (at 70 k A-scans/s). The performance of the SC-based SD-OCT endoscopy system was demonstrated by imaging guinea pig esophagus in vivo, achieving image quality comparable to that acquired with a broadband home-built Ti:sapphire laser.


Subject(s)
Endoscopy/methods , Signal-To-Noise Ratio , Tomography, Optical Coherence/methods , Animals , Guinea Pigs , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...