Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(8): e29761, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681634

ABSTRACT

Bast fibers are defined as those obtained from the outer cell layers of the bast of various plant families. They are finding use in textile applications and are widely used as reinforcements for green composites, as bast fibers are perceived as "sustainable". There is a growing demand for bast fibers across the world due to their renewable and biodegradable nature. The bast fibers are mainly composed of cellulose, which potentially considers the growing techniques, harvesting and extraction processes of bast fibers most used to produce fibers with appropriate quality to apply in the daily lives of modern men and women in contemporary society. This review paper looks at many aspects of natural fibers, with a focus on plant bast fibers, including their impact on prehistoric and historical society. This review shows that bast fibers are competitive compared to man-made fibers in many applications, but variability in mechanical properties and low tenacity may limit their use in high-strengthh composites and extend to, particularly in aerospace, automotive, packaging, building industries, insulation, E-composites (Eco composites), geotextiles and many other applications are currently being explored. Considering, important characteristics of bast fibers include physical, mechanical, and chemical properties. This makes bast fibers one of the most important classes of plant fibers to use as reinforcing agents in thermosetting/thermoplastic polymer matrices. And the effect of bast fibers as reinforcement in the properties of ECO-composites, GREEN-composites, BIO-composites, lightweight composites. Bast fibers play an important role in sustainability, the preservation of the health of the environment, the well-being of the next generation, and even the daily lives of men and women in the contemporary world.

2.
Heliyon ; 9(12): e22550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076077

ABSTRACT

Due to the extreme threats as environmental and health issues caused by the petroleum-based leachable plasticizers, researchers among different domains are more interested in finding unique biodegradable plasticizers from natural sources. The present study used Nelumbo nucifera leaf to extract novel biopolymers as viable substitutes for chemical plasticizers. The biopolymers extraction was carried out through chemical means and its physico-chemical and morphological characterization were carried out to confirm its plastic nature. The polymers extracted possess a low glass transition temperature (77.17 °C), good thermal stability (230 °C), low density (0.94 g/cc), good surface roughness (34.154 µm), low crystallinity index (25.1%) and moderate crystallite size (16.36 nm). The presence of an organic polymer with specific chemical groups as olefinic alkenes, epoxide, imino/azo groups, and hydrophobic organic siloxane groups, signify that the material is a condensed phenolic derivative. Furthermore, bio-film was formulated using NLP and poly lactic acid (PLA) matrix to evaluate its plasticizing effect and film-forming ability. Variation in specific properties of film was noted after bio-plasticizer addition, where tensile strength (20.94 ± 1.5 MPa to 19.22 ± 1.3 MPa) and Young's modulus (1.462 ± 0.43 GPa to 1.025 ± 0.52 GPa) was found to be decreased whereas increased the percentage of elongation at break (26.30 ± 1.1% to 39.64 ± 1.6%). In addition, decreased glass transition temperature (Tg) (59.17 °C), good surface compatibility, and increased flexibility of NLP-PLA film in contrast to pure PLA film authorizes the plasticizing effect of bio-plasticizers on PLA. Since the extracted bio-plasticizers could be a suitable replacement to harmful synthetic plasticizers for lightweight packaging applications in bioplastics sector.

3.
Heliyon ; 9(11): e20939, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954319

ABSTRACT

In this present investigation, sodium carboxymethyl cellulose grafted with Fumaric acid/Acrylamide (CMC/FA/AAm=CFA) hydrogel and their silver nanocomposite hydrogels (CFA-Ag x, x = 5, 10 and 20) were developed by simple, cost effective and ecofriendly greener method. Mint leaf extract was used as an efficient natural reducing agent due to presence of active and antioxidant potential of polyphenol and flavonoid components. Swelling equilibrium of CFA hydrogel showed Seq% 3000 both in pH medium and distilled water. CFA (90:10) hydrogel has been produced greater than Seq% 6000. The synthesized CFA (90:10)-Ag-5, CFA (90:10)-Ag-10 and CFA (90:10)-Ag-20 nanocomposite hydrogels have been observed lower Seq% 2000-3000 than the CFA hydrogel. The homogeneous distribution of AgNPs throughout the CFA hydrogel and nanocomposites has been explored by SEM analysis. The interaction of network heteroatoms with AgNPs has been strongly revealed by the FTIR spectra and XRD analysis. The thermal stability of CFA (90:10)-Ag-5, 10, and 20 nanocomposite hydrogels have showed greater stability than CFA hydrogel which is confirmed by TGA/DSC thermogram analysis. The TEM analysis was used to explore a uniform distribution of spherical AgNPs (10 nm-50 nm) embedded on the CFA composite hydrogel. The CFA (90:10)-Ag-20 nanocomposite hydrogel has showed good antibacterial activity beside E. coli (Gram positive) and S. aureus (Gram negative) pathogens. Based on the antibacterial activity and swelling properties of CFA-Ag nanocomposite hydrogels have the ability to accelerate the antibacterial activity and are potential candidates for medical and environmental applications.

4.
Heliyon ; 9(11): e21239, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954341

ABSTRACT

In this study, micro-cellulosic fibers were isolated from the bark of Morinda tinctoria (MT) and characterized for the first time. The anatomical, physical, chemical, thermal, and mechanical properties of the M. tinctoria bark fiber (MTBF) were investigated. The mean diameter and density values were determined to be 32.013 ± 1.43 µm and 1.4875 g/cm³, respectively. Zeta potential analysis and particle size measurements provided the evidence of enhanced micro-particle behavior on the fiber's surface. Various structural characterizations confirmed the presence of polysaccharide structures, monosaccharide compositions, glycosidic residues (sugar linkages), and cohesive reactions of TMSA (Trimethylsilyl alditol) derivatives, indicating the fiber's potential for strong surface absorption properties. X-ray diffraction analysis revealed a crystallinity index of 51 % and a crystallite size of 3.086 nm for MTBF. Fourier transform infrared analysis indicated the presence of cellulose, hemicellulose, and lignin constituents, along with their corresponding functional groups. The calculated values of Young's modulus and tensile strength were determined to be 75.7 GPa and 746.77 MPa, respectively. Thermogravimetric analysis demonstrated the thermal stability of the extracted MTBF up to 240 °C. Based on these findings, the MT microfibrils derived from the bark can be considered as potential substitutes for existing synthetic composites, offering reinforcement for novel bio composites.

5.
J Mech Behav Biomed Mater ; 146: 106086, 2023 10.
Article in English | MEDLINE | ID: mdl-37639932

ABSTRACT

Medicinal plants play a prodigious role in the wound-healing process. Tridax procumbens (TP) has been proven to show strong antimicrobial activity against Staphylococcus aureus and could heal skin infections. Identifying mechanical properties of TP in his solid state and mixed with carboxymethylcellulose (CMC) have never been studied before. In this study, fresh TP liquid extracts blended with carboxymethylcellulose (CMC) biofilm were developed through the solution casting method. The casted film was tested for tensile strength through the Universal Tensile Tester (UTT), and the results were compared with the Finite Element Numerical Model (FEM) through the FEM code developed on the ANSYS solver. The experimental mean tensile test results for pure CMC were found as follows: tensile stress at the maximum of 15.31 MPa, modulus of elasticity of 7,24 GPa, the density of 1,62 g/cm3, and Poisson's ratio of 0.22. The experimental mean tensile test results for pure CMC/TP 50% were as follows: tensile stress at the maximum of 26.2 MPa, modulus of elasticity of 2.092 GPa, and density of 1.276 g/cm3. After several iterations, the following results were found for pure TP: modulus of elasticity of 0.225 GPa, a density of 0.93 g/cm3, and Poisson's ratio of 0.4 through FEM using inverse method technique. The experimental results were compared with the FEM solutions, which were found to be very close to the experimental results. The TP/CMC bio-membrane could be applied as a good wound dressing in biomedical applications. Mechanical properties found in this paper can contribute to the valorization of TP usage in several medical curing films applications.


Subject(s)
Anti-Infective Agents , Gastropoda , Animals , Carboxymethylcellulose Sodium , Anti-Infective Agents/pharmacology , Bandages , Biofilms , Elasticity
6.
Heliyon ; 9(7): e17760, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456007

ABSTRACT

Fillers or particulate fillers find a growing utilization as reinforcement material in polymer composites due to their ability to enhance the properties of the ensuing composites. The discarded seed in sapodilla fruit is available in abundant and the shell of the seed can be used as a reinforcing filler. The primary goal of this study is to extract and characterize the sapodilla seed shell powder (SSS) physically and chemically in order to assess its potential for reinforcement as a particulate filler in polymer composites. The sapodilla seed shell filler was characterized experimentally by Physio-chemical analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive X-ray analysis (EDAX). The morphology and the filler size were determined by Scanning electron microscopy (SEM) and Particle size analysis. The thermal degradation behaviour was evaluated by Thermogravimetric analysis (TGA).

7.
Int J Biol Macromol ; 242(Pt 4): 125099, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37263328

ABSTRACT

Natural fibers are available as an essential substitute for synthetic fiber in many applications. However, the sensitivity of Chinese Windmill Palm or Trachycarpus Fortune Fiber (TFF) to water causes low interfacial bonding between the matrix and the fiber and at the end reduces the mechanical properties of the composite product. Alkaline treatment improves mechanical properties and does not affect water absorption. Hence, additional treatment in the coating is required. This study uses alkaline treatment and coating modification using blended chitosan and Acrylated Epoxidized Soybean Oil (AESO). Blend coating between AESO and chitosan is performed to increase water absorption and mechanical properties. TFF water resistance improved significantly after the coating, with water absorption of the alkaline/blend coating-TFF of 3.98 % ± 0.52 and swell ability of 3.156 % ± 0.17. This indicated that blend coating had formed a cross-link of fiber and matrix after alkalization. Thus, the single fiber tensile strength increased due to the alkaline treatment, and water absorption decreased due to the coating. The combination of alkaline treatment and blend coating on TFF brings excellent properties, as shown by the increase in tensile strength in both single fiber test and composite.


Subject(s)
Arecaceae , Biopolymers , Chitosan , Coated Materials, Biocompatible , Soybean Oil , Arecaceae/chemistry , Chitosan/chemistry , Alkalies/chemistry , Tensile Strength , Soybean Oil/chemistry , Hydrophobic and Hydrophilic Interactions , Biopolymers/chemistry , Coated Materials, Biocompatible/chemistry
8.
Heliyon ; 9(4): e15020, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37082640

ABSTRACT

The use of Kevlar in the field of ballistic and stabbing protection has been studied by researchers in polymeric composites for this purpose. This study presents complementary knowledge on energy absorption and dissipation in ρ-aramid fabric impregnated with shear thickening fluids (STFs), especially aiming to obtain better protection against impacts that are deeply associated with STFs, as well as color change, accelerated aging (QUV), and penetration depth (drop tower test). In addition, Scanning Electron Microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) was performed. The research shows that there was a good distribution of STF particles on the ρ-Aramid fabric surface, promoting increased friction between the interfilament and the yarns, further increasing performance and, consequently, improving the energy absorption and dissipation mechanism and, also, the penetration effectiveness in relation to non-impregnated ρ-Aramid fabric. Regarding the protection efficiency against UV exposure (250-400 nm region), there was a significantly decreased compared to those non-impregnated Kevlar® woven with STFs. The FTIR analysis showed that the conditions of aging, after exposure to UV, did not produce new functional groups, that is, there was no chemical modification. Finally, Kevlar fabric impregnated with STFs improved penetration depth performance with the blades independent of the blade type with up to 81% increase in resistance. This result was improved due to interactions between the nanoparticles present in STFs, yarns, and even high-performance woven impregnated with shear-thickening fluids.

9.
Heliyon ; 9(3): e14428, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967975

ABSTRACT

Fiber-reinforced polymer (FRP) composites play a vital role in the production of structural and semi-structural components for engineering applications. The drilling process is a commonly employed machining process for FRP composites to join the FRP structural elements. Usually, the FRP composites possess a heterogeneous nature because of their multi-layered structure, hybridization, and the presence of multi-phase materials. Hence, common problems like delaminations, fuzzing, buckling, cracking, matrix and fiber burning occur during the drilling operations. These problems cause dimensional inaccuracy, poor surface finish, and tool wear and reduce the mechanical strength of the composites. The optimum drilling parameters (drill geometry, speed, feed, and depth of cut) selection for the specific materials is good to achieve effective drilling performance and better surface quality of the holes. Yet, little study has been done on how all of these factors affect the size of the drilled hole. The majority of drilling studies on FRPCs in the past have focused on how to improve the hole quality by maximizing processing conditions, and there has been little discussion on the correlation between drilling conditions, physical properties, and production techniques. This is what motivated to review the characteristics and properties analysis of FRP composites. As a consequence of this research, it is anticipated that scientists and researchers would place a greater emphasis on the drilling characteristic of the workpieces made from FRPCs than on other attributes. This review clearly presents an overview of FRP composites drilling that had progressed from 2000 to 2021. The analysis of different drilling conditions and parameters like thrust force, drill geometry, temperature, speed, and feed also includes the post-drilling analysis through delaminations, thermal damage, and surface roughness. Furthermore, the recent developments in carbon, glass, and natural fiber reinforced polymer composites are studied with both conventional and nonconventional drilling techniques. Based on the above studies, some future challenges and conclusions are drawn from this review.

10.
Heliyon ; 9(3): e14381, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36942256

ABSTRACT

Biocomposites have gained huge attention in the field of manufacturing. They are widely accepted over conventional petroleum-based composites due to less environmental footprint and safer living habitats, abundance, availability, recyclability, reusability, and end-life disposals. The potential applications of biocomposites are now widely accepted in key engineering areas such as automotive, construction, consumer products, and aerospace industries. Concurrently, tribological properties for biopolymer composites are an appealing research direction. In this review article, a comprehensive literature survey of recent progress made in sliding wear properties of biocomposites are discussed in detail. It summarizes natural and synthetic ways to attain tribological performances in biocomposites such as biopolymers with bio-fillers, biopolymers with synthetic/inorganic fillers, and non-biopolymers with bio-fillers. The study gives a deeper understanding of the crucial informations regarding sliding wear properties of biocomposites and thereby aid in the future research in the design and preparation of similar composites.

11.
Macromol Rapid Commun ; 43(17): e2100862, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35609116

ABSTRACT

Application of natural fiber-polymer composites (NFPCs) in different industrial applications provides competitive edge due to their lightweight, higher specific mechanical properties than glass fibers, sustainability, and lower cost involved in production. There are certain challenges associated with natural fibers and their reinforcement in composites such as poor bonding between the fibers and matrix due to their contradictory nature of characteristics, moisture absorption, lower thermal properties, and poor interfacial adhesion between the natural fiber and polymer matrix. The challenges involved in NFPCs need to be overcome to produce materials with relatively equivalent properties to those of conventional composites and other metallic structures. Several researchers around the globe have conducted investigations with the primary attention being paid to the modification of natural fibers and matrix by employing surface treatments and other chemical treatment methods. In order to address the need for eco-friendly and sustainable materials in different domains, a comprehensive review on natural fibers and their sources, available matrix materials, modification techniques, mechanical and thermal properties of NFPCs, is needed for better understanding of the behavior of NFPCs. This work provides the information and holistic view of natural fiber-reinforced composites based on the results obtained from modification techniques, with the view of focusing the review in terms of different chemical and physical treatment techniques, modification of fibers and matrix, and enhanced mechanical and thermal properties in the composites.


Subject(s)
Polymers , Polymers/chemistry , Surface Properties
12.
Polymers (Basel) ; 12(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008025

ABSTRACT

Epoxy-based biocomposites are a good alternative for metals in lightweight applications. This research has been focused on the effect of accelerated weathering on the mechanical, thermal, contact angle, and water absorption behavior of neat epoxy, individual kenaf and sisal, and kenaf/sisal hybrid epoxy composites. The composite was fabricated by hand layup method. Among the various composites studied, sisal/kenaf/sisal hybrid epoxy composites showed the best properties and retained the thermo-mechanical properties with the lowest water absorption properties even after the weathering test. Thus, composites with hybridized kenaf and sisal with sisal outer layer are encouraging semistructural materials in outdoor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...