Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1199-205, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27130529

ABSTRACT

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by ß-blocker also restored NO formation by PAH cells, identifying one mechanism by which ß-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.


Subject(s)
Endothelial Cells/enzymology , Hypertension, Pulmonary/enzymology , Nitric Oxide Synthase Type III/metabolism , Protein Processing, Post-Translational , Adult , Cells, Cultured , Female , Humans , Hypertension, Pulmonary/pathology , Lung/enzymology , Lung/pathology , Male , Middle Aged , Nitric Oxide/biosynthesis , Phosphorylation , Protein Kinase C/metabolism
2.
J Clin Invest ; 126(7): 2465-81, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27214549

ABSTRACT

High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.


Subject(s)
Arginine/metabolism , Asthma/immunology , Asthma/metabolism , Mitochondria/metabolism , Adult , Animals , Bronchial Hyperreactivity , Electron Transport Complex I/metabolism , Energy Metabolism , Female , Humans , Inflammation , Interleukin-13/metabolism , Interleukin-17/metabolism , Male , Mice , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , STAT6 Transcription Factor/metabolism , Th2 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...