Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Sci Rep ; 11(1): 14714, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282213

ABSTRACT

Pulmonary arterial hypertension (PAH) is an insidious disease characterized by severe remodeling of the pulmonary vasculature caused in part by pathologic changes of endothelial cell functions. Although heterogeneity of endothelial cells across various vascular beds is well known, the diversity among endothelial cells in the healthy pulmonary vascular bed and the pathologic diversity among pulmonary arterial endothelial cells (PAEC) in PAH is unknown and previously unexplored. Here single-cell RNA sequencing technology was used to decipher the cellular heterogeneity among PAEC in the human pulmonary arteries isolated from explanted lungs from three patients with PAH undergoing lung transplantation and three healthy donor lungs not utilized for transplantation. Datasets of 36,368 PAH individual endothelial cells and 36,086 healthy cells were analyzed using the SeqGeq bioinformatics program. Total population differential gene expression analyses identified 629 differentially expressed genes between PAH and controls. Gene Ontology and Canonical Ingenuity analysis revealed pathways that are known to be involved in pathogenesis, as well as unique new pathways. At the individual cell level, dimensionality reduction followed by density based clustering revealed the presence of eight unique PAEC clusters that were typified by proliferative, angiogenic or quiescent phenotypes. While control and PAH harbored many similar subgroups of endothelial cells, PAH had greater proportions of angiogenic and proliferative subsets. These findings identify that only specific subgroups of PAH PAEC have gene expression different than healthy PAEC, and suggest these subpopulations lead to the pathologic functions leading to remodeling.


Subject(s)
Endothelial Cells/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Adult , Case-Control Studies , Cells, Cultured , Female , Gene Expression Profiling/methods , Humans , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung/physiopathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Single-Cell Analysis/methods , Transcriptome
3.
Sci Rep ; 9(1): 18623, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819116

ABSTRACT

Pulmonary arterial endothelial cells (PAEC) are mechanistically linked to origins of pulmonary arterial hypertension (PAH). Here, global proteomics and phosphoproteomics of PAEC from PAH (n = 4) and healthy lungs (n = 5) were performed using LC-MS/MS to confirm known pathways and identify new areas of investigation in PAH. Among PAH and control cells, 170 proteins and 240 phosphopeptides were differentially expressed; of these, 45 proteins and 18 phosphopeptides were located in the mitochondria. Pathologic pathways were identified with integrative bioinformatics and human protein-protein interactome network analyses, then confirmed with targeted proteomics in PAH PAEC and non-targeted metabolomics and targeted high-performance liquid chromatography of metabolites in plasma from PAH patients (n = 30) and healthy controls (n = 12). Dysregulated pathways in PAH include accelerated one carbon metabolism, abnormal tricarboxylic acid (TCA) cycle flux and glutamate metabolism, dysfunctional arginine and nitric oxide pathways, and increased oxidative stress. Functional studies in cells confirmed abnormalities in glucose metabolism, mitochondrial oxygen consumption, and production of reactive oxygen species in PAH. Altogether, the findings indicate that PAH is typified by changes in metabolic pathways that are primarily found in mitochondria.


Subject(s)
Peptides/metabolism , Phosphoproteins/metabolism , Proteomics/methods , Pulmonary Arterial Hypertension/metabolism , Adult , Arginine/metabolism , Citric Acid Cycle , Computational Biology , Endothelial Cells/metabolism , Female , Glucose/metabolism , Humans , Lung/metabolism , Lung Transplantation , Male , Metabolomics , Middle Aged , Mitochondria/metabolism , Nitric Oxide/metabolism , Oxidative Stress , Protein Interaction Mapping , Proteome , Reactive Oxygen Species/metabolism
4.
PLoS One ; 12(8): e0183066, 2017.
Article in English | MEDLINE | ID: mdl-28797075

ABSTRACT

AIMS: Arginine metabolism via inducible nitric oxide synthase (iNOS) and arginase 2 (ARG2) is higher in asthmatics than in healthy individuals. We hypothesized that a sub-phenotype of asthma might be defined by the magnitude of arginine metabolism categorized on the basis of high and low fraction of exhaled nitric oxide (FENO). METHODS: To test this hypothesis, asthmatics (n = 52) were compared to healthy controls (n = 51) for levels of FENO, serum arginase activity, and airway epithelial expression of iNOS and ARG2 proteins, in relation to clinical parameters of asthma inflammation and airway reactivity. In parallel, bronchial epithelial cells were evaluated for metabolic effects of iNOS and ARG2 expression in vitro. RESULTS: Asthmatics with high FENO (≥ 35 ppb; 44% of asthmatics) had higher expression of iNOS (P = 0.04) and ARG2 (P = 0.05) in the airway, indicating FENO is a marker of the high arginine metabolic endotype. High FENO asthmatics had the lowest FEV1% (P < 0.001), FEV1/FVC (P = 0.0002) and PC20 (P < 0.001) as compared to low FENO asthmatics or healthy controls. Low FENO asthmatics had near normal iNOS and ARG2 expression (both P > 0.05), and significantly higher PC20 (P < 0.001) as compared to high FENO asthmatics. In vitro studies to evaluate metabolic effects showed that iNOS overexpression and iNOS+ARG2 co-expression in a human bronchial epithelial cell line led to greater reliance on glycolysis with higher rate of pyruvate going to lactate. CONCLUSIONS: The high FENO phenotype represents a large portion of the asthma population, and is typified by greater arginine metabolism and more severe and reactive asthma.


Subject(s)
Arginine/metabolism , Asthma/metabolism , Asthma/pathology , Bronchi/pathology , Nitric Oxide/metabolism , Adult , Breath Tests , Bronchi/metabolism , Exhalation , Female , Glycolysis , Humans , Male , Nitric Oxide Synthase Type II/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
5.
Redox Biol ; 2: 513-9, 2014.
Article in English | MEDLINE | ID: mdl-24624341

ABSTRACT

Air-liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air-liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases.


Subject(s)
Energy Metabolism , Exercise Test/methods , Knee/physiology , Muscle, Skeletal/physiology , Adult , Glutathione/metabolism , Humans , Lung/physiology , Male , Oxidative Stress , Physical Exertion , Reactive Oxygen Species/blood , Reactive Oxygen Species/urine , Young Adult
6.
Sci Signal ; 6(284): ra60, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23861542

ABSTRACT

Tumor necrosis factor-α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α-induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. We identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α-dependent signaling by p75 and induction of target gene expression persisted substantially longer in cells deficient in myosin regulatory light chain (MRLC; a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α-dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α-dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling.


Subject(s)
Cytosol/metabolism , Gene Expression Regulation/physiology , Human Umbilical Vein Endothelial Cells/metabolism , MAP Kinase Signaling System/physiology , Myosin Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Myosin Type II/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
7.
Am J Respir Cell Mol Biol ; 46(6): 723-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22427538

ABSTRACT

Pulmonary endothelial functions are critical to maintain the low pressure of the pulmonary circulation and effective diffusion capacity of the lung. To investigate pulmonary endothelial cell biology in healthy or diseased lungs, we developed methods to harvest and culture pure populations of primary pulmonary arterial endothelial cells and microvascular endothelial cells from human lung explanted at time of transplantation or from donor lungs not used in transplantation. The purity and characteristics of cultured endothelial cells is ascertained by morphologic criteria using phase contrast and electron microscopy; phenotypic expression profile for endothelial specific proteins such as endothelial nitric oxide synthase, platelet/endothelial cell adhesion molecule, and von Willbrand factor; and endothelial function assays such as Dil-acetylated low-density lipoprotein uptake and tube formation. This detailed method provides researchers with the ability to establish cells for molecular, genetic, and biochemical investigation of human pulmonary vascular diseases.


Subject(s)
Endothelium, Vascular/cytology , Lung/cytology , Pulmonary Artery/cytology , Animals , Flow Cytometry , Humans , Immunohistochemistry , Microscopy, Confocal , Microscopy, Electron , Swine
8.
Am J Respir Crit Care Med ; 184(12): 1400-8, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21920918

ABSTRACT

RATIONALE: Heritable pulmonary arterial hypertension (HPAH) is primarily caused by mutations of the bone morphogenetic protein (BMP) type-II receptor (BMPR2). Recent identification of mutations in the downstream mediator Smad-8 (gene, SMAD9) was surprising, because loss of Smad-8 function in canonical BMP signaling is largely compensated by Smad-1 and -5. We therefore hypothesized that noncanonical pathways may play an important role in PAH. OBJECTIVES: To determine whether HPAH mutations disrupt noncanonical Smad-mediated microRNA (miR) processing. METHODS: Expression of miR-21, miR-27a, and miR-100 was studied in pulmonary artery endothelial (PAEC) and pulmonary artery smooth muscle cells (PASMC) from explant lungs of patients with PAH. MEASUREMENTS AND MAIN RESULTS: SMAD9 mutation completely abrogated miR induction, whereas canonical signaling was only reduced by one-third. miR-21 levels actually decreased, suggesting that residual canonical signaling uses up or degrades existing miR-21. BMPR2 mutations also led to loss of miR induction in two of three cases. HPAH cells proliferated faster than other PAH or controls. miR-21 and miR-27a each showed antiproliferative effects in PAEC and PASMC, and PAEC growth rate after BMP treatment correlated strongly with miR-21 fold-change. Overexpression of SMAD9 corrected miR processing and reversed the hyperproliferative phenotype. CONCLUSIONS: HPAH-associated mutations engender a primary defect in noncanonical miR processing, whereas canonical BMP signaling is partially maintained. Smad-8 is essential for this miR pathway and its loss was not complemented by Smad-1 and -5; this may represent the first nonredundant role for Smad-8. Induction of miR-21 and miR-27a may be a critical component of BMP-induced growth suppression, loss of which likely contributes to vascular cell proliferation in HPAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Endothelium, Vascular/pathology , Hypertension, Pulmonary/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/pathology , Mutation/genetics , Smad8 Protein/genetics , Adult , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Pulmonary Artery/pathology , Signal Transduction/genetics , Smad8 Protein/metabolism
9.
Pulm Circ ; 1(4): 475-86, 2011.
Article in English | MEDLINE | ID: mdl-22530103

ABSTRACT

Proliferative pulmonary vascular remodeling is the pathologic hallmark of pulmonary arterial hypertension (PAH) that ultimately leads to right heart failure and death. Highly proliferative endothelial cells known as endothelial colony-forming cells (ECFC) participate in vascular homeostasis in health as well as in pathological angiogenic remodeling in disease. ECFC are distinguished by the capacity to clonally proliferate from a single cell. The presence of ECFC in the human pulmonary arteries and their role in PAH pathogenesis is largely unknown. In this study, we established a simple technique for isolating and growing ECFC from cultured pulmonary artery endothelial cells (PAEC) to test the hypothesis that ECFC reside in human pulmonary arteries and that the proliferative vasculopathy of PAH is related to greater numbers and/or more proliferative ECFC in the pulmonary vascular wall. Flow cytometric forward and side scatter properties and aggregate correction were utilized to sort unmanipulated, single PAEC to enumerate ECFC in primary PAEC cultures derived from PAH and healthy lungs. After 2 weeks, wells were assessed for ECFC formation. ECFC derived from PAH PAEC were more proliferative than control. A greater proportion of PAH ECFC formed colonies following subculturing, demonstrating the presence of more ECFC with high proliferative potential among PAH PAEC. Human androgen receptor assay showed clonality of progeny, confirming that proliferative colonies were single cell-derived. ECFC expressed CD31, von Willebrand factor, endothelial nitric oxide synthase, caveolin-1 and CD34, consistent with an endothelial cell phenotype. We established a simple flow cytometry method that allows ECFC quantification using unmanipulated cells. We conclude that ECFC reside among PAEC and that PAH PAEC contain ECFC that are more proliferative than ECFC in control cultures, which likely contributes to the proliferative angiopathic process in PAH.

10.
Am J Pathol ; 176(3): 1130-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20110409

ABSTRACT

Severe pulmonary hypertension is irreversible and often fatal. Abnormal proliferation and resistance to apoptosis of endothelial cells (ECs) and hypertrophy of smooth muscle cells in this disease are linked to decreased mitochondria and preferential energy generation by glycolysis. We hypothesized this metabolic shift of pulmonary hypertensive ECs is due to greater hypoxia inducible-factor1alpha (HIF-1alpha) expression caused by low levels of nitric oxide combined with low superoxide dismutase activity. We show that cultured ECs from patients with idiopathic pulmonary arterial hypertension (IPAH-ECs) have greater HIF-1alpha expression and transcriptional activity than controls under normoxia or hypoxia, and pulmonary arteries from affected patients have increased expression of HIF-1alpha and its target carbonic anhydrase IX. Decreased expression of manganese superoxide dismutase (MnSOD) in IPAH-ECs paralleled increased HIF-1alpha levels and small interfering (SI) RNA knockdown of MnSOD, but not of the copper-zinc SOD, increased HIF-1 protein expression and hypoxia response element (HRE)-driven luciferase activity in normoxic ECs. MnSOD siRNA also reduced nitric oxide production in supernatants of IPAH-ECs. Conversely, low levels of a nitric oxide donor reduced HIF-1alpha expression in normoxic IPAH-ECs. Finally, mitochondria numbers increased in IPAH-ECs with knockdown of HIF-1alpha. These findings indicate that alterations of nitric oxide and MnSOD contribute to pathological HIF-1alpha expression and account for lower numbers of mitochondria in IPAH-ECs.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/pathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Adult , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Female , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Superoxide Dismutase/metabolism , Transcription, Genetic/drug effects , Umbilical Veins/cytology
11.
Am J Physiol Cell Physiol ; 294(1): C241-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18003751

ABSTRACT

We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A(165) isoform stimulated MKP-1 expression, whereas the VEGF-A(162) isoform induced the gene to a lesser extent, and the VEGF-A(121) isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.


Subject(s)
Cell Movement , Dual Specificity Phosphatase 1/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Signal Transduction , Thrombin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Movement/drug effects , Cells, Cultured , Dual Specificity Phosphatase 1/deficiency , Dual Specificity Phosphatase 1/genetics , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Transgenic , Neovascularization, Physiologic/drug effects , Neuropilins/metabolism , Peptide Fragments/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-fyn/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Up-Regulation , Vascular Endothelial Growth Factor Receptor-2/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
13.
Cancer Res ; 66(19): 9356-61, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17018587

ABSTRACT

Inactivation of p53 function, which frequently occurs in tumors, can significantly modulate tumor cell sensitivity to radiation and chemotherapeutic drugs. However, in addition to acting on malignant cells, anticancer agents act on the cells of tumor stroma, causing activation of a p53 response. The effect of this response on treatment outcome has been the subject of the present study. Tumors with p53-deficient stroma were generated using mouse tumorigenic packaging cells that produce a p53 inhibitory retrovirus, encoding a dominant-negative p53 mutant. Tumors maintaining wild-type p53 in their stroma were formed by cells of similar origin but deficient in retroviral production due to the deletion of the packaging signal in the retroviral vector. Comparison of these tumor models, differing only in p53 status of their stromas, showed that tumors with p53-deficient stroma were significantly more sensitive to experimental chemotherapy and radiotherapy. A similar effect was achieved when anticancer treatment was combined with pharmacologic suppression of p53 by the cyclic form of pifithrin alpha, a small-molecule inhibitor of p53. Potentiation of the anticancer effect of chemotherapy and radiotherapy by p53 suppression in the tumor stroma is likely to be due to the increased sensitivity of p53-deficient endothelium to genotoxic stress as shown both in cell culture and in experimental tumors. Thus, reversible pharmacologic suppression of p53 may be a viable approach to improving anticancer treatment via an enhanced antiangiogenic effect of chemotherapy and radiotherapy.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Benzothiazoles/therapeutic use , Carcinoma, Lewis Lung/therapy , Cyclophosphamide/therapeutic use , Drug Resistance, Neoplasm/drug effects , Imidazoles/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Thiazoles/therapeutic use , Toluene/analogs & derivatives , Tumor Suppressor Protein p53/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Benzothiazoles/pharmacology , Benzothiazoles/toxicity , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/radiotherapy , Cell Line, Transformed , Cyclophosphamide/pharmacology , Drug Screening Assays, Antitumor , Endothelial Cells/radiation effects , Fibroblasts , Imidazoles/pharmacology , Imidazoles/toxicity , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Protein Conformation , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/toxicity , Rats , Stromal Cells/drug effects , Stromal Cells/radiation effects , Thiazoles/pharmacology , Thiazoles/toxicity , Toluene/pharmacology , Toluene/therapeutic use , Toluene/toxicity , Transduction, Genetic , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...