Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Methods Programs Biomed ; 102(1): 47-63, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21306782

ABSTRACT

This paper presents a fully automated segmentation and classification scheme for mammograms, based on breast density estimation and detection of asymmetry. First, image preprocessing and segmentation techniques are applied, including a breast boundary extraction algorithm and an improved version of a pectoral muscle segmentation scheme. Features for breast density categorization are extracted, including a new fractal dimension-related feature, and support vector machines (SVMs) are employed for classification, achieving accuracy of up to 85.7%. Most of these properties are used to extract a new set of statistical features for each breast; the differences among these feature values from the two images of each pair of mammograms are used to detect breast asymmetry, using an one-class SVM classifier, which resulted in a success rate of 84.47%. This composite methodology has been applied to the miniMIAS database, consisting of 322 (MLO) mammograms -including 15 asymmetric pairs of images-, obtained via a (noisy) digitization procedure. The results were evaluated by expert radiologists and are very promising, showing equal or higher success rates compared to other related works, despite the fact that some of them used only selected portions of this specific mammographic database. In contrast, our methodology is applied to the complete miniMIAS database and it exhibits the reliability that is normally required for clinical use in CAD systems.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Breast/pathology , Female , Humans , Pectoralis Muscles/diagnostic imaging
2.
Artif Intell Med ; 41(1): 39-55, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17714924

ABSTRACT

OBJECTIVE: A comprehensive signal analysis approach on the mammographic mass boundary morphology is presented in this article. The purpose of this study is to identify efficient sets of simple yet effective shape features, employed in the original and multi-scaled spectral representations of the boundary, for the characterization of the mammographic mass. These new methods of mass boundary representation and processing in more than one domain greatly improve the information content of the base data that is used for pattern classification purposes, introducing comprehensive spectral and multi-scale wavelet versions of the original boundary signals. The evaluation is conducted against morphological and diagnostic characterization of the mass, using statistical methods, fractal dimension analysis and a wide range of classifier architectures. METHODS AND MATERIALS: This study consists of (a) the investigation of the original radial distance measurements under the complete spectrum of signal analysis, (b) the application of curve feature extractors of morphological characteristics and the evaluation of the discriminative power of each one of them, by means of statistical significance analysis and dataset fractal dimension, and (c) the application of a wide range of classifier architectures on these morphological datasets, in order to conduct a comparative evaluation of the efficiency and effectiveness of all architectures, for mammographic mass characterization. Radial distance signal was exploited using the discrete Fourier transform (DFT) and the discrete wavelet transform (DWT) as additional carrier signals. Seven uniresolution feature functions were applied over these carrier signals and multiple shape descriptors were created. Classification was conducted against mass shape type and clinical diagnosis, using a wide range of linear and non-linear classifiers, including linear discriminant analysis (LDA), least-squares minimum distance (LSMD), k-nearest neighbor (k-NN), radial basis function (RBF) and multi-layered perceptron (MLP) neural networks (NN), and support vector machines (SVM). Fractal analysis was employed as a dataset analysis tool in the feature selection phase. The discriminative power of the features produced by this composite analysis is subsequently analyzed by means of multivariate analysis of variance (MANOVA) and tested against two distinct classification targets, namely (a) the morphological shape type of the mass and (b) the histologically verified clinical diagnosis for each mammogram. RESULTS: Statistical analysis and classification results have shown that the discrimination value of the features extracted from the DWT components and especially the DFT spectrum, are of great importance. Furthermore, much of the information content of the curve features in the case of DFT and DWT datasets is directly related to the texture and fine-scale details of the corresponding envelope signal of the spectral components. Neural classifiers outperformed all other methods (SVM not used because they are mainly two-class classifiers) with overall success rate of 72.3% for shape type identification, while SVM achieved the overall highest 91.54% for clinical diagnosis. Receiver operating characteristic (ROC) analysis has been employed to present the sensitivity and specificity of the results of this study.


Subject(s)
Breast Diseases/diagnostic imaging , Breast Diseases/pathology , Mammography , Radiographic Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Algorithms , Fractals , Humans , Multivariate Analysis , Predictive Value of Tests , ROC Curve
3.
IEEE Trans Neural Netw ; 18(5): 1545-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18220205

ABSTRACT

Geometric methods are very intuitive and provide a theoretically solid approach to many optimization problems. One such optimization task is the support vector machine (SVM) classification, which has been the focus of intense theoretical as well as application-oriented research in machine learning. In this letter, the incorporation of recent results in reduced convex hulls (RCHs) to a nearest point algorithm (NPA) leads to an elegant and efficient solution to the SVM classification task, with encouraging practical results to real-world classification problems, i.e., linear or nonlinear and separable or nonseparable.


Subject(s)
Algorithms , Artificial Intelligence , Models, Statistical , Pattern Recognition, Automated/methods , Computer Simulation
4.
IEEE Trans Neural Netw ; 17(3): 671-82, 2006 May.
Article in English | MEDLINE | ID: mdl-16722171

ABSTRACT

The geometric framework for the support vector machine (SVM) classification problem provides an intuitive ground for the understanding and the application of geometric optimization algorithms, leading to practical solutions of real world classification problems. In this work, the notion of "reduced convex hull" is employed and supported by a set of new theoretical results. These results allow existing geometric algorithms to be directly and practically applied to solve not only separable, but also nonseparable classification problems both accurately and efficiently. As a practical application of the new theoretical results, a known geometric algorithm has been employed and transformed accordingly to solve nonseparable problems successfully.


Subject(s)
Algorithms , Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Neural Networks, Computer , Systems Theory
5.
Artif Intell Med ; 37(2): 145-62, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16716579

ABSTRACT

OBJECTIVE: Localized texture analysis of breast tissue on mammograms is an issue of major importance in mass characterization. However, in contrast to other mammographic diagnostic approaches, it has not been investigated in depth, due to its inherent difficulty and fuzziness. This work aims to the establishment of a quantitative approach of mammographic masses texture classification, based on advanced classifier architectures and supported by fractal analysis of the dataset of the extracted textural features. Additionally, a comparison of the information content of the proposed feature set with that of the qualitative characteristics used in clinical practice by expert radiologists is presented. METHODS AND MATERIAL: An extensive set of textural feature functions was applied to a set of 130 digitized mammograms, in multiple configurations and scales, constructing compact datasets of textural "signatures" for benign and malignant cases of tumors. These quantitative textural datasets were subsequently studied against a set of a thorough and compact list of qualitative texture descriptions of breast mass tissue, normally considered under a typical clinical assessment, in order to investigate the discriminating value and the statistical correlation between the two sets. Fractal analysis was employed to compare the information content and dimensionality of the textural features datasets with the qualitative information provided through medical diagnosis. A wide range of linear and non-linear classification architectures was employed, including linear discriminant analysis (LDA), least-squares minimum distance (LSMD), K-nearest-neighbors (K-nn), radial basis function (RBF) and multi-layer perceptron (MLP) artificial neural network (ANN), as well as support vector machine (SVM) classifiers. The classification process was used as the means to evaluate the inherent quality and informational content of each of the datasets, as well as the objective performance of each of the classifiers themselves in real classification of mammographic breast tumors against verified diagnosis. RESULTS: Textural features extracted at larger scales and sampling box sizes proved to be more content-rich than their equivalents at smaller scales and sizes. Fractal analysis on the dimensionality of the textural datasets verified that reduced subsets of optimal feature combinations can describe the original feature space adequately for classification purposes and at least the same detail and quality as the list of qualitative texture descriptions provided by a human expert. Non-linear classifiers, especially SVMs, have been proven superior to any linear equivalent. Breast mass classification of mammograms, based only on textural features, achieved an optimal score of 83.9%, through SVM classifiers.


Subject(s)
Artificial Intelligence , Mammography/statistics & numerical data , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Databases, Factual , Female , Fractals , Humans , Linear Models , Neural Networks, Computer , Radiographic Image Enhancement , Signal Processing, Computer-Assisted
6.
Eur J Radiol ; 54(1): 80-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15797296

ABSTRACT

Advances in modern technologies and computers have enabled digital image processing to become a vital tool in conventional clinical practice, including mammography. However, the core problem of the clinical evaluation of mammographic tumors remains a highly demanding cognitive task. In order for these automated diagnostic systems to perform in levels of sensitivity and specificity similar to that of human experts, it is essential that a robust framework on problem-specific design parameters is formulated. This study is focused on identifying a robust set of clinical features that can be used as the base for designing the input of any computer-aided diagnosis system for automatic mammographic tumor evaluation. A thorough list of clinical features was constructed and the diagnostic value of each feature was verified against current clinical practices by an expert physician. These features were directly or indirectly related to the overall morphological properties of the mammographic tumor or the texture of the fine-scale tissue structures as they appear in the digitized image, while others contained external clinical data of outmost importance, like the patient's age. The entire feature set was used as an annotation list for describing the clinical properties of mammographic tumor cases in a quantitative way, such that subsequent objective analyses were possible. For the purposes of this study, a mammographic image database was created, with complete clinical evaluation descriptions and positive histological verification for each case. All tumors contained in the database were characterized according to the identified clinical features' set and the resulting dataset was used as input for discrimination and diagnostic value analysis for each one of these features. Specifically, several standard methodologies of statistical significance analysis were employed to create feature rankings according to their discriminating power. Moreover, three different classification models, namely linear classifiers, neural networks and support vector machines, were employed to investigate the true efficiency of each one of them, as well as the overall complexity of the diagnostic task of mammographic tumor characterization. Both the statistical and the classification results have proven the explicit correlation of all the selected features with the final diagnosis, qualifying them as an adequate input base for any type of similar automated diagnosis system. The underlying complexity of the diagnostic task has justified the high value of sophisticated pattern recognition architectures.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Mammography , Neural Networks, Computer , Radiographic Image Enhancement/methods , Analysis of Variance , Expert Systems , Female , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...