Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 6378, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430626

ABSTRACT

Recent wildfire events (e.g. Mediterranean region, USA, and Australia) showed that this hazard poses a serious threat for wildland-urban interface (WUI) areas around the globe. Furthermore, recent events in regions where wildfire does not constitute a frequent hazard (e.g. Siberia, Scandinavia) indicated that the spatial pattern of wildfire risk might have significantly changed. To prepare for upcoming extreme events, it is critical for decision-makers to have a thorough understanding of the vulnerability of the built environment to wildfire. Building quality and design standards are important not only because building loss is costly but also because robust buildings may offer shelter when evacuation is not possible. However, studies aiming at the analysis of wildfire vulnerability for the built environment are limited. This paper presents an innovative solution for the vulnerability assessment to wildfires, making use of an all-relevant feature selection algorithm established on statistical relationships to develop a physical vulnerability index for buildings subject to wildfire. Data from a recent and systematically documented wildfire event in Greece (Mati, 2018) are used to select and weight the relevant indicators using a permutation-based automated feature selection based on random forests. Building characteristics including the structural type, the roof type, material and shape, the inclination of the ground, the surrounding vegetation, the material of the shutters and the ground covering were selected and formed into the index. The index may be used in other places in Europe and beyond, especially where no empirical data are available supporting decision-making and risk reduction of an emerging hazard amplified by climate change.


Subject(s)
Fires , Wildfires , Algorithms , Climate Change , Conservation of Natural Resources , Housing
2.
Bull Earthq Eng ; 20(14): 7933-7955, 2022.
Article in English | MEDLINE | ID: mdl-35210982

ABSTRACT

On 30 October 2020, an Mw = 7.0 earthquake struck the Eastern Aegean Sea with considerable impact on Samos Island in Greece and the area of Izmir in Turkey. It was the most lethal seismic event in 2020 worldwide, and the largest and most destructive in the Aegean Sea since the 1955 earthquake that also affected both countries. The Civil Protection authorities in Greece and Turkey were effectively mobilized responding to the earthquake emergency. The main response actions comprised initial announcements of the earthquake and first assessment of the impact, provision of civil protection guidelines through emergency communication services, search and rescue operations,medical care, set up of emergency shelters and provisions of essential supplies, psychological support, as well as education, training activities and financial support to the affected population. From the comparison of the Civil Protection framework and the implemented response actions, it is seen that actions at both sides of the eastern Aegean Sea, followed a single-hazard approach in disaster management with similar response activities coordinated by a main Civil Protection agency, which was in close cooperation with the respective authorities at a national, regional and local level. Based on the presented information, it is concluded that the post-earthquake response and emergency management were satisfactory in both countries, with valuable lessons learnt ahead of the next major earthquake. To this end, many aspects can be further addressed to enhance community resilience and introduce a multi-hazard approach in (natural and man-made) disaster management.

3.
Sci Total Environ ; 592: 262-276, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28319713

ABSTRACT

Even though rare, mega-fires raging during very dry and windy conditions, record catastrophic impacts on infrastructure, the environment and human life, as well as extremely high suppression and rehabilitation costs. Apart from the direct consequences, mega-fires induce long-term effects in the geomorphological and hydrological processes, influencing environmental factors that in turn can affect the occurrence of other natural hazards, such as floods and mass movement phenomena. This work focuses on the forest fire of 2007 in Peloponnese, Greece that to date corresponds to the largest fire in the country's record that burnt 1773km2, causing 78 fatalities and very significant damages in property and infrastructure. Specifically, this work examines the occurrence of flood and mass movement phenomena, before and after this mega-fire and analyses different influencing factors to investigate the degree to which the 2007 fire and/or other parameters have affected their frequency. Observational evidence based on several data sources collected during the period 1989-2016 show that the 2007 fire has contributed to an increase of average flood and mass movement events frequency by approximately 3.3 and 5.6 times respectively. Fire affected areas record a substantial increase in the occurrence of both phenomena, presenting a noticeably stronger increase compared to neighbouring areas that have not been affected. Examination of the monthly occurrence of events showed an increase even in months of the year were rainfall intensity presented decreasing trends. Although no major land use changes has been identified and chlorophyll is shown to recover 2years after the fire incident, differences on the type of vegetation as tall forest has been substituted with lower vegetation are considered significant drivers for the observed increase in flood and mass movement frequency in the fire affected areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...