Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535406

ABSTRACT

Proper species identification is the keystone of successful integrated pest management (IPM). However, efforts to identify thrips species in Canadian greenhouses have not been formally made since the 1980s. In response to recent increases in crop damage, we sampled thrips communities from eight commercial floriculture greenhouses in the Niagara region (Ontario, Canada) from May until August 2016. Selected sites were revisited in 2017, 2018, and 2019 to determine changes in species composition over time. Western flower thrips (Frankliniella occidentalis (Pergande)), along with onion thrips (Thrips tabaci Lindeman), constituted the majority of species found. Other pest species (less than 8% of specimens across all sampling years) included poinsettia thrips (Echinothrips americanus Morgan), chrysanthemum thrips (Thrips nigropilosus Uzel), and Frankliniella fusca (Hinds). Further investigations of thrips outbreaks in Ontario from 2016 to 2023 revealed other important species, including Thrips parvispinus (Karny), Hercinothrips femoralis (Reuter), and Scirtothrips dorsalis Hood. The current biocontrol strategies used in Ontario floriculture crops for western flower thrips do not adequately control onion thrips or other thrips pests in ornamental crops, making identification a fundamental step in determining whether biocontrol or chemical control strategies should be implemented. However, traditional taxonomic keys are inaccessible to non-specialists due to their technical difficulty. Using the data gathered in these surveys, we developed a simplified, illustrated identification key for use by growers and IPM consultants.

2.
Zookeys ; (819): 277-290, 2019.
Article in English | MEDLINE | ID: mdl-30713446

ABSTRACT

The Canadian Hemiptera (Sternorrhyncha, Auchenorrhyncha, and Heteroptera) fauna is reviewed, which currently comprises 4011 species, including 405 non-native species. DNA barcodes available for Canadian specimens are represented by 3275 BINs. The analysis was based on the most recent checklist of Hemiptera in Canada (Maw et al. 2000) and subsequent collection records, literature records and compilation of DNA barcode data. It is estimated that almost 600 additional species remain to be discovered among Canadian Hemiptera.

3.
Zookeys ; (819): 291-294, 2019.
Article in English | MEDLINE | ID: mdl-30713447

ABSTRACT

The known Canadian Thysanoptera fauna currently consists of 147 species, including 28 non-native species, and there are five additional species found only indoors. DNA barcoding data, presence of species in adjacent regions, and preliminary evidence of the presence of host-associated cryptic species suggest that there may be as many as 255 additional species awaiting discovery or description in Canada.

4.
PLoS One ; 10(4): e0125635, 2015.
Article in English | MEDLINE | ID: mdl-25923328

ABSTRACT

DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided.


Subject(s)
DNA Barcoding, Taxonomic , Gene Library , Hemiptera/genetics , Animals , Canada , Hemiptera/classification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...