Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 37(6): 793-802, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9707293

ABSTRACT

The putative D3 receptor agonist, (+)-PD 128907, is widely used to study the functional relevance of D3 receptors in vivo. Given that non-selective D2/3/4 receptor agonists serve as effective discriminative stimuli in rats we have trained animals to discriminate (+)-PD 128907 (30 microg kg(-1), s.c.) from saline and examined the pharmacological specificity of the response. Consistent with a D3 receptor mediated response, the non-selective D2/3 receptor agonist apomorphine and the D3 preferring agonists 7-OH-DPAT and (-) quinpirole generalised to the cue whilst the D2/3 receptor antagonists haloperidol, raclopride, spiperone and (+)-butaclamol antagonised drug lever responding. In contrast, the D1 selective agonist (+/-)-SKF 81297 and D1/5 selective antagonist, R-(+)-SCH 23390 had no effect. Results also suggest that presynaptic dopamine receptors are involved. Thus the dopamine depleting agent alpha-methyl-p-tyrosine potentiated the effects of a submaximal dose of (+)-PD 128907 whereas amphetamine failed to generalise per se and blocked (+)-PD 128907 lever selection. However, studies using subtype selective antagonists argue against a role for the D3 receptor. Thus the 10-fold selective D2 receptor antagonist L-741,626 blocked the (+)-PD 128907 discriminative stimulus whereas L-745,829 and GR 103,691, antagonists > 40 and > 100-fold selective for D3 receptors, failed to modify the response. These results suggest that presynaptic D2 receptors mediate the discriminative stimulus properties of (+)-PD 128907 and highlight the lack of selectivity of (+)-PD 128907 for D3 receptors in vivo.


Subject(s)
Benzopyrans/pharmacology , Dopamine Agonists/pharmacology , Oxazines/pharmacology , Receptors, Dopamine D2/drug effects , Animals , Discrimination, Psychological , Male , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/physiology , Receptors, Dopamine D3
3.
Eur J Pharmacol ; 290(3): 221-6, 1995 Aug 15.
Article in English | MEDLINE | ID: mdl-7589216

ABSTRACT

Using radioligand binding studies, we have investigated the binding properties of four 4-hydroxy-2-quinolones, a novel series of selective antagonists for the glycine site on the N-methyl-D-aspartate (NMDA) receptor. L-701,324, L-703,717, L-698,532 and L-695,902 inhibited [3H]L-689,560 (glycine site antagonist) binding to rat cortex/hippocampus P2 membranes with IC50 values of 1.97, 4.47, 209 and 6448 nM, respectively, whilst also inhibiting non-equilibrium [3H]dizocilpine binding to the NMDA receptor ion-channel. All four compounds partially inhibited L-[3H]glutamate (approximately 50% inhibition; agonist) binding and enhanced [3H]cis-4-phosphonomethyl-2-piperidine carboxylate ([3H]CGS-19755; 41-81% enhancement; 'C-5' antagonist) and [3H]3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonate ([3H]CPP; 28-66% enhancement; 'C-7' antagonist) binding to the glutamate recognition site of the NMDA receptor with EC50 values similar to those observed for [3H]L-689,560 binding. These results provide further evidence for allosteric interactions between the glutamate and glycine recognition sites of the NMDA receptor complex, and as the 4-hydroxy-2-quinolones are 'full' antagonists at the glycine site, indicate that these interactions are not caused by the intrinsic activity of a compound.


Subject(s)
Glycine Agents/pharmacology , Receptors, Glutamate/metabolism , Receptors, Glycine/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Site/drug effects , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , In Vitro Techniques , Radioligand Assay , Rats , Receptors, Glutamate/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects
5.
J Med Chem ; 36(22): 3397-408, 1993 Oct 29.
Article in English | MEDLINE | ID: mdl-8230130

ABSTRACT

3,4-Dihydro-2(1H)-quinolones, evolved from 2-carboxy-1,2,3,4,- tetrahydroquinolines and 3-carboxy-4-hydroxy-2(1H)-quinolones, have been synthesized and evaluated in vitro for antagonist activity at the glycine site on the NMDA receptor and for AMPA [(RS)-alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid] antagonist activity. Generally poor potency at the glycine site is observed when a variety of electron-withdrawing substituents are attached to the 3-position of 3,4-dihydro-2(1H)-quinolones. The analogues 5-9 (IC50 values > 100 microM, Table I) exist largely in the 3,4-dipseudoaxial conformation (as evidenced by 1H NMR spectra), whereas the 3-cyano derivative (10, IC50 = 12.0 microM) has a relatively high population of the 3-pseudoequatorial conformer. The 3-nitro analogue (4, IC50 = 1.32 microM) has a pKa approximately 5 and thus exists at physiological pH as an anion with the nitro group planar to the quinolone ring. The general requirement of acidity for high affinity binding at the glycine/NMDA site is supported with the good activity of the other 3-nitro derivatives (13-21), all of which are deprotonated at physiological pH. The 3-nitro-3,4-dihydro-2(1H)-quinolones and 2-carboxy-1,2,3,4-tetrahydroquinolines show quite different structure-activity relationships at the 4-position. The unselective excitatory amino acid activity of 21 is comparable with 6,7-dichloro-quinoxaline-2,3-dione and 6,7-dichloroquinoxalic acid and this suggests similarities in their modes of binding to excitatory amino acid receptors. The broad spectrum excitatory amino acid antagonist activity of the 4-unsubstituted analogue 21 (KbNMDA = 6.7 microM, KbAMPA = 9.2 microM) and the glycine/NMDA selectivity of the other 3-nitro derivatives allows the proposal of a model for AMPA receptor binding which differs from the glycine binding pharmacophore in that there is bulk intolerance adjacent to the 4-position. Compound 21 (L-698,544) is active (ED50 = 13.2 mg/kg) in the DBA/2 mouse anticonvulsant model and is the most potent combined glycine/NMDA-AMPA antagonist yet reported, in vivo, and may prove to be a useful pharmacological tool.


Subject(s)
Amino Acids/antagonists & inhibitors , Glycine/metabolism , Nitro Compounds/chemical synthesis , Nitro Compounds/pharmacology , Quinolones/chemical synthesis , Quinolones/pharmacology , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Binding Sites , Chemical Phenomena , Chemistry, Physical , Nitro Compounds/metabolism , Quinolones/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...