Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(12): 3592-8, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23642482

ABSTRACT

The identification of a novel fused triazolo-pyrrolopyridine scaffold, optimized derivatives of which display nanomolar inhibition of Janus kinase 1, is described. Prototypical example 3 demonstrated lower cell potency shift, better permeability in cells and higher oral exposure in rat than the corresponding, previously reported, imidazo-pyrrolopyridine analogue 2. Examples 6, 7 and 18 were subsequently identified from an optimization campaign and demonstrated modest selectivity over JAK2, moderate to good oral bioavailability in rat with overall pharmacokinetic profiles comparable to that reported for an approved pan-JAK inhibitor (tofacitinib).


Subject(s)
Janus Kinase 1/antagonists & inhibitors , Pyridines/pharmacology , Animals , Crystallography, X-Ray , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Kinetics , Models, Molecular , Pyridines/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Rats
2.
J Med Chem ; 55(13): 6176-93, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22698084

ABSTRACT

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1.


Subject(s)
Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Animals , Biological Assay , Biological Availability , Cell Line , Crystallography, X-Ray , Dogs , Hepatocytes/cytology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Janus Kinase 1/chemistry , Janus Kinase 2/chemistry , Mice , Models, Molecular , Rats , Structure-Activity Relationship
3.
J Med Chem ; 55(12): 5901-21, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22591402

ABSTRACT

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as rheumatoid arthritis (RA), by specific targeting of the JAK1 pathway. Examination of the preferred binding conformation of clinically effective, pan-JAK inhibitor 1 led to identification of a novel, tricyclic hinge binding scaffold 3. Exploration of SAR through a series of cycloamino and cycloalkylamino analogues demonstrated this template to be highly tolerant of substitution, with a predisposition to moderate selectivity for the JAK1 isoform over JAK2. This study culminated in the identification of subnanomolar JAK1 inhibitors such as 22 and 49, having excellent cell potency, good rat pharmacokinetic characteristics, and excellent kinase selectivity. Determination of the binding modes of the series in JAK1 and JAK2 by X-ray crystallography supported the design of analogues to enhance affinity and selectivity.


Subject(s)
Imidazoles/chemistry , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Animals , Cell Line , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Substrate Specificity
4.
Bioorg Med Chem Lett ; 16(4): 872-5, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16303300

ABSTRACT

(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (1) was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors and enhances performance in animal models of cognition. The routes of metabolism of this compound in vivo in rat have been well characterised, the identities of the major metabolites are confirmed by synthesis and their biological profiles were evaluated. An unusual oxidation of the pyrazolo[1,5-d][1,2,4]triazine core to the corresponding pyrazolo[1,5-d][1,2,4]triazin-4(5H)-one scaffold by aldehyde oxidase has been observed.


Subject(s)
GABA Agonists/metabolism , GABA Agonists/pharmacokinetics , GABA-A Receptor Agonists , Isoxazoles/metabolism , Isoxazoles/pharmacokinetics , Protein Subunits/agonists , Triazines/metabolism , Triazines/pharmacokinetics , Animals , Dogs , Dose-Response Relationship, Drug , GABA Agonists/chemical synthesis , Hydrolysis , Isoxazoles/chemical synthesis , Macaca mulatta , Mice , Molecular Conformation , Rats , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution , Triazines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...