Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 80(6): 1421-37, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24360545

ABSTRACT

A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Cell Cycle Proteins/physiology , Kinesins/physiology , Receptors, AMPA/metabolism , Synaptic Transmission/physiology , Animals , Caenorhabditis elegans Proteins/drug effects , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Cycloheximide/pharmacology , Glutamic Acid/pharmacology , Kinesins/genetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mutation , Receptors, AMPA/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...