Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 723: 138202, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32224413

ABSTRACT

Food waste has recently gained much worldwide interest due to its influence on the environment, economy and society. Gathering and recycling of food waste is the essential issue in the waste management and the interest in processing food waste arises mainly out of influence of the processes of food putrefaction on the environment. Composting of food waste encounters a number of technical challenges, arising weak physical structure of food waste with weak porosity, high content of water, low carbon-to-nitrogen relation and fast hydrolysis and accumulation of organic acids during composting. Therefore, the aim of this study was to investigate the challenges facing installations intended for food waste composting, with the purpose to their optimization with use of appropriate additives. Physico-chemical, biochemical characteristics and phytotoxicity of the produced compost has been measured. Two additives (20% biochar and 20% sawdust) were chosen from experimental variants I-XII containing different additives (biochar, Devonian sand, sawdust) in diverse concentration. The use of selected additives seems to slightly increase potential of hydrogen value and carbon-to-nitrogen ratio, while decreasing electrical conductivity in comparison with control sample. The results obtained also show that the addition of biochar leads to an increase dehydrogenase, phosphatase and arylsulphatase activities and addition of sawdust has a positive effect on beta-D-glucosidase, protease, phosphatase and arylsulphatase activities. The phytotoxicity test shows that the compost made of food waste (control sample) and with addition of biochar is toxic to plants. By contrast, the addition of sawdust shows that the compost was not phytotoxic. In conclusion, the addition of additives does not provide unambiguous results in terms of the quality of the final product in all monitored parameters. Therefore, we can state that food waste was reduced and hygienized, and that the final product does not meet conditions for mature compost.


Subject(s)
Composting , Refuse Disposal , Food , Nitrogen , Soil
2.
Sci Total Environ ; 723: 137971, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32220733

ABSTRACT

Waste composting is becoming a key element of integrated waste management. Composting has a number of advantages, including economic benefits, improvement of soil properties through the use of compost, reduction in the use of chemical fertilisers, and minimization of environmental pollution. Composting on a landfill surface appears to be an economical solution that can help close the waste loop and material cycle. In this study, a composting plant located on a landfill surface was analysed. The main objective of the research was to identify the species of plants growing in the organic fraction of municipal solid waste in temporary storage, in the composting plant, and in maturing compost located in a reclaimed plot at the landfill site. During monitoring, 88 plant species were identified altogether. It was observed that compost can become a source of weed infestation. To control the presence of weeds in the compost, basic principles of composting are to be followed to reduce the quantity of weed seeds. The thermophilic phase must occur to reduce the viability of seeds in the input materials and sufficient moisture must be ensured during the composting process. When these principles are strictly observed and the stored compost is maintained without vegetation, the supply of seeds in the compost will be low, and the undesirable spread of plant species to adjacent areas will be controlled. The results showed that the use of the obtained compost did not result in the propagation of weed species. This study demonstrates that composting on a reclaimed landfill offers various advantages such as a closed waste management cycle, coverage of the active landfill body, and fertilisation of the reclaimed part of the landfill.

SELECTION OF CITATIONS
SEARCH DETAIL
...