Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36661817

ABSTRACT

In vitro tumor spheroids have proven to be useful 3D tumor culture models for drug testing, and determining the molecular mechanism of tumor progression and cellular interactions. Therefore, there is a continuous search for their industrial scalability and routine preparation. Considering that hydrogels are promising systems that can favor the formation of tumor spheroids, our study aimed to investigate and develop less expensive and easy-to-use amorphous and crosslinked hydrogels, based on natural compounds such as sodium alginate (NaAlg), aloe vera (AV) gel powder, and chitosan (CS) for tumor spheroid formation. The ability of the developed hydrogels to be a potential spheroid-forming system was evaluated using MDA-MB-231 and U87MG cancer cells. Spheroid abilities were influenced by pH, viscosity, and crosslinking of the hydrogel. Addition of either AV or chitosan to sodium alginate increased the viscosity at pH 5, resulting in amorphous hydrogels with a strong gel texture, as shown by rheologic analysis. Only the chitosan-based gel allowed formation of spheroids at pH 5. Among the variants of AV-based amorphous hydrogels tested, only hydrogels at pH 12 and with low viscosity promoted the formation of spheroids. The crosslinked NaAlg/AV, NaAlg/AV/glucose, and NaAlg/CS hydrogel variants favored more efficient spheroid formation. Additional studies would be needed to use AV in other physical forms and other formulations of hydrogels, as the current study is an initiation, in evaluating the potential use of AV gel in tumor spheroid formation systems.

2.
Membranes (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33918993

ABSTRACT

The nanofiltration composite membranes were obtained by incorporation of KIT-6 ordered mesoporous silica, before and after its functionalization with amine groups, into polyphenylene-ether-ether-sulfone (PPEES) matrix. The incorporation of silica nanoparticles into PPEES polymer matrix was evidenced by FTIR and UV-VIS spectroscopy. SEM images of the membranes cross-section and their surface topology, evidenced by AFM, showed a low effect of KIT-6 silica nanoparticles loading and functionalization. The performances of the obtained membranes were appraised in permeation of Chaenomeles japonica fruit extracts and the selective separation of phenolic acids and flavonoids. The obtained results proved that the PPEES with functionalized KIT-6 nanofiltration membrane, we have prepared, is suitable for the polyphenolic compound's concentration from the natural extracts.

3.
Pharmaceutics ; 14(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35056971

ABSTRACT

Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables' effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions' (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs' properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.

4.
Carbohydr Polym ; 246: 116571, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747243

ABSTRACT

The study sheds light on the interaction between chitosan (Ch) and polyglycidol (PGL) and uses their interpolymer complex in hydrophilic coating of iron oxide particles (M). Preliminary investigations were performed by modeling chitosan and polyglycidol chains interactions using coarse grained beads approximation and molecular dynamics simulations. The results revealed that Ch and PGL chains associate together forming weak strength complexes, which was experimentally confirmed by surface tension, fluorescence and FTIR. The Ch-PGL mixture (C) and sodium dodecylsulfate (S) were used for layer-by-layer preparation of hydrophilic multilayer coatings of M. The successful covering, demonstrated by DLS, Zeta potential, FTIR, EDAX, preserved the particles super-paramagnetic properties. The most stable multilayer nanocomposite (MSCS) efficiently adsorbed methylene blue from water. The Freundlich model fitted well the equilibrium isotherm data, indicating a heterogeneous, multilayer adsorption. Benefiting from both nano-size and magnetic properties, this adsorbent could be an effectively, cheaply and eco-friendly wastewater treatment means.


Subject(s)
Chitosan/chemistry , Coloring Agents/chemistry , Ferric Compounds/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Methylene Blue/chemistry , Propylene Glycols/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Nanocomposites/chemistry , Particle Size , Sodium Dodecyl Sulfate/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Surface Tension , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
5.
J Photochem Photobiol B ; 153: 198-205, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26422749

ABSTRACT

The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided.


Subject(s)
Serum Albumin, Bovine/metabolism , Surface-Active Agents/metabolism , Animals , Cattle , Circular Dichroism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Binding , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Surface-Active Agents/chemistry , Thermodynamics , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...