Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Org Chem ; 89(14): 9816-9829, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38917339

ABSTRACT

Various substituted pyrrolo[1,2-a]quinolines and pyrrolo[2,1-a]isoquinolines were synthesized in good to high yields by the Et3N-mediated reaction of push-pull 3-nitrobenzofurans or 1-Ts-/1-Ms-3-nitroindoles and precursors of carbonyl-stabilized quinolinium and isoquinolinium ylides as 1,3-dipole equivalents. These transformations proceed in a one-pot manner starting with the formal [3 + 2]-cycloaddition stage, which is accompanied by double dearomatization of both quinoline/isoquinoline and benzofuran/indole moieties, followed by ring-opening of cyclic intermediate formed and nitrous acid elimination sequence. [3 + 2]-Cycloadducts were isolated as the final products in cases of impossibility or difficulty of their enolization. The present protocol was successfully extended to 3-nitro-4H-chromene derivatives as push-pull dipolarophile component. Finally, using the method of competing reactions, the reactivity of the starting compounds was compared with each other.

2.
Nat Commun ; 15(1): 1315, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351122

ABSTRACT

Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth's most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.

3.
Nat Commun ; 14(1): 6688, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865645

ABSTRACT

Femtosecond-laser-assisted material restructuring employs extreme optical intensities to localize the ablation regions. To overcome the minimum feature size limit set by the wave nature of photons, there is a need for new approaches to tailored material processing at the nanoscale. Here, we report the formation of deeply-subwavelength features in silicon, enabled by localized laser-induced phase explosions in prefabricated silicon resonators. Using short trains of mid-infrared laser pulses, we demonstrate the controllable formation of high aspect ratio (>10:1) nanotrenches as narrow as [Formula: see text]. The trench geometry is shown to be scalable with wavelength, and controlled by multiple parameters of the laser pulse train, such as the intensity and polarization of each laser pulse and their total number. Particle-in-cell simulations reveal localized heating of silicon beyond its boiling point and suggest its subsequent phase explosion on the nanoscale commensurate with the experimental data. The observed femtosecond-laser assisted nanostructuring of engineered microstructures (FLANEM) expands the nanofabrication toolbox and opens exciting opportunities for high-throughput optical methods of nanoscale structuring of solid materials.

4.
ACS Appl Mater Interfaces ; 15(42): 49299-49311, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37843052

ABSTRACT

A noncovalent integration of nanosheets of molybdenum disulfide (MoS2) and the zinc porphyrin complex Zn(II) 5,10,15,20-tetrakis(4-carboxyphenyl)porphine (ZnTCPP) through coordination bonding with metal clusters of zinc acetate (Zn[OAc]2) was applied for synthesis of stable hybrid nanomaterial avoiding surface prefunctionalization. The X-ray powder diffraction in combination with the BET nitrogen adsorption method confirms formation of a ZnTCPP-based surface-attached metal-organic framework (SURMOF) with micropores of 1.63 nm on the MoS2 nanosheets. Fluorescence spectroscopy confirmed Forster resonance energy transfer (FRET) between MoS2 and ZnTCPP without contact quenching. Fluorescent trapping with terephthalic acid for hydroxyl radicals and Sensor Green for singlet oxygen was applied for studying the pathways of photodegradation of model organic pollutant 1,5-dihydroxynaphthalene (DHN) in the presence of SURMOF/MoS2. Visible light initiates sensitization through the excitation of ZnTCPP generating singlet oxygen, whereas UV-light promotes either aerobic FRET-mediated "Z scheme" or anaerobic "Type II heterojunction" mechanisms. Owing to its multimodal photochemistry, the SURMOF/MoS2 hybrid showed comparatively high photocatalytic activity in UV-assisted degradation of DHN (keffUV = 4.0 × 10-2 min-1) as well as the antibacterial activity confirmed by E. coli survival test under visible light. Noncovalent self-assembly utilizing coordination bonding in SURMOFs as supramolecular adhesive to avoid surface premodification provides a basis for new types of multicomponent nanosystems with switchable functionalities by combining different 2D materials and chromophores in one hybrid structure.

5.
Chem Commun (Camb) ; 59(80): 11932-11946, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37727948

ABSTRACT

Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.

6.
Entropy (Basel) ; 25(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37761616

ABSTRACT

The formalism of reduced quantum electrodynamics is generalized to the case of heterostructures composed of a few atomically thick layers, and the corresponding effective (2+1)-dimensional gauge theory is formulated. This dimensionally reduced theory describes charged fermions confined to N planes and contains N vector fields with Maxwell's action modified by non-local form factors whose explicit form is determined. Taking into account the polarization function, the explicit formulae for the screened electromagnetic interaction are presented in the case of two and three layers. For a heterostructure with two atomically thick layers and charged fermions described by the massless Dirac equation, the dynamical gap generation of the excitonic type is studied. It is found that additional screening due to the second layer increases the value of the critical coupling constant for the gap generation compared to that in graphene.

7.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762647

ABSTRACT

Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD.


Subject(s)
Cheese , Stress Disorders, Post-Traumatic , Animals , Rats , Stress Disorders, Post-Traumatic/drug therapy , Brain-Derived Neurotrophic Factor/genetics , Resveratrol/pharmacology , Resveratrol/therapeutic use , Amines , Dietary Supplements
8.
Molecules ; 28(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175068

ABSTRACT

Understanding the processes that occur during the redox transformations of complexes coordinated by redox-active apical ligands is important for the design of electrochemically active compounds with functional properties. In this work, a detailed analysis of the interaction energy and electronic structure was performed for cluster complexes trans-[Re6S8bipy4Cl2]n (n = 2-, 4-, 6-, 8-), which can be obtained by stepwise electrochemical reduction of a neutral cluster trans-[Re6S8bipy4Cl2] in DMSO solution. It was shown that the formation of open-shell paramagnetic ions with S = 1, 2 and 1 is the most energetically favorable for n = 2-, 4- and 6-, respectively.

9.
Chem Commun (Camb) ; 59(20): 2923-2926, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36799209

ABSTRACT

We introduce here a new subclass of copper(I) hybrid emitters simultaneously containing [CuxIy]z- anions and Cu+ cations, separated in space by a Janus head ligand. When UV-irradiated at 298 K, these unique "Two-In-One" hybrids exhibit a short-lived green TADF with near-unity quantum yield and a strong solvatochromic effect. Moreover, they manifest a strong radioluminescence upon X-ray irradiation. These findings open up new possibilities for the design of highly performing TADF materials.

10.
Langmuir ; 38(49): 15145-15155, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36454956

ABSTRACT

A one-step protocol for interfacial self-assembly of graphene oxide (GO), glutamine-substituted perylene diimide (PDI-glu), 10,12-pentacosadiynoic acid (PCDA), and zinc acetate into three- and four-component hybrid nanofilms through hydrogen and coordination bonding was developed. The hybrids deposited onto solid supports were studied after polymerization of PCDA by UV-vis absorption, fluorescence, and Raman spectroscopies, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results of spectroscopic studies suggest that the hybrids assembled through H-bonds can maintain the light-induced Förster energy transfer from the PDI-glu chromophore to the conjugated polymer and then to GO leading to fluorescence quenching. In the hybrids assembled through coordination bonding with zinc clusters, the energy transfer proceeds from PDI-glu to the PDA polymer, whereas the transfer from PDA to GO is quenched completely. Another important characteristic of these ultrathin hybrids is their stability with respect to photobleaching of chromophores due to the acceptor properties of GO. The as-assembled hybrid nanofilms were integrated with conventional photovoltaic planar architectures to study their photoelectric properties. The zinc-containing hybrids integrated with a hole transport layer exhibited photovoltaic properties. The cell with the integrated four-component hybrid comprising both PDI-glu and PDA showed a photocurrent/dark current ratio almost an order higher than that of the three-component hybrid assembled with PDA only. The supramolecular method based on the interfacial self-assembly can be extended to a wide variety of organic chromophores and polymerizable surfactants for integrating them into multicomponent functional GO-based nanohybrids with targeted properties for organic electronics.

11.
Inorg Chem ; 61(50): 20472-20479, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36469457

ABSTRACT

We have obtained three new rhenium(IV) chalcobromides belonging to the homologous series {Re4S4}Br8(TeBr2)n (n = 0, 3, 4): a molecular complex {Re4S4}Br8(TeBr2)4 (1), a dimeric complex [{Re4S4}(TeBr2)3Br7(µ-Br)]2 (2), and a two-dimensional (2D) polymeric compound {Re4S4}Br8 (3). Compound 1 is isotypic to the already known {Re4Te4}(TeBr2)4Br8, while 2 and 3 exhibit a new type of binding of tetrahedral clusters via µ-Br bridges. Compounds were characterized by X-ray single-crystal diffraction, X-ray powder diffraction, and thermal and elemental analyses. In compound 2, two tetrahedral cluster cores {Re4S4}8+ are linked together forming a dimer through two Re-µ-Br-Re bridges. Calculations of the electron localization function (ELF) showed that there is no covalent interaction between rhenium atoms of neighboring clusters. In compound 3, each rhenium atom of the {Re4S4}8+ core is coordinated by three Br ligands: one terminal Br and two bridging µ-Br ligands. As a result, eight bridging bromine atoms link {Re4S4}8+ cluster cores into goffered layers. {Re4S4}Br8 is the new stable rhenium(IV) thiobromide, the first discovered in the Re-S-Br system, along with the already known octahedral rhenium(III) thiobromides Re6S4+xBr10-2x (x = 0-4).

12.
Int Angiol ; 41(5): 405-412, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36264097

ABSTRACT

BACKGROUND: This study aimed to assess the efficacy and safety of Actovegin for the treatment of patients with Fontaine stage IIB peripheral arterial disease (PAD). METHODS: The study included 366 patients with Fontaine stage IIB PAD from 19 centers (Russia, Georgia, Kazakhstan). Placebo or Actovegin (1200 mg daily [QD]) were administered intravenously for two weeks, followed by a 10-week course of oral administration (placebo or Actovegin 1200 mg QD). The primary efficacy outcome was percentage change in the initial claudication distance (ICD) by week 12. Secondary outcomes included percent and absolute changes in ICD, absolute claudication distance (ACD) and changes in Quality of Life (QoL) assessed by the SF-36 Mental Health Score. RESULTS: The increase in ICD after 12 weeks of Actovegin treatment was 29.19% (LS mean [Actovegin vs. placebo]; 95% CI: 9.35-49.02; P=0.0041). The percentage increase in ICD at 24 weeks was 35.51% (LS mean; 95% CI: 10.96-60.05; P=0.0047), which correspond to an increase in absolute ICD of 41.22 m (LS mean; 95% CI: 16.77-65.66; P=0.0010). The percentage increase in ACD after 24 weeks was 36.47% compared with the baseline (LS mean; 95% CI: 10.07-62.88; P=0.0069), which corresponded to an absolute increase in ACD of 50.92 m (LS mean; 95% CI: 18.35-83.49; P=0.0023). A statistically significant improvement in QoL with Actovegin compared with placebo was demonstrated within 24 weeks (LS mean 2.28; 95% CI: 0.88-3.68; P=0.0015). Actovegin demonstrated an acceptable safety and tolerability profile with minor differences from placebo. CONCLUSIONS: The results of this 12-week course of Actovegin demonstrated its superiority over placebo in the increase in ICD and ACD at weeks 2, 12 and 24 from the start of treatment. Actovegin has an acceptable safety and tolerability profile.


Subject(s)
Intermittent Claudication , Peripheral Vascular Diseases , Humans , Heme/therapeutic use , Intermittent Claudication/diagnosis , Intermittent Claudication/drug therapy , Quality of Life , Walking
13.
Molecules ; 27(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296505

ABSTRACT

A dimolybdenum tetraacetate (Mo2(O2CCH3)4) molecule is embedded between two electrodes formed by semi-infinite 1D monatomic chains of lithium, aluminum, and titanium atoms. Electron transport through the Mo2(O2CCH3)4 molecule is calculated. The role of quadrupole bonding in the transport properties of the studied systems is analyzed.

14.
J Am Chem Soc ; 144(7): 3210-3221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35157448

ABSTRACT

Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(µ:κ2-O2C)Fp (3) and LdippAl(Me)(µ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.


Subject(s)
Carbon Dioxide/chemistry , Coordination Complexes/chemistry , Cyclohexenes/chemistry , Epoxy Compounds/chemistry , Free Radicals/chemistry , Aluminum/chemistry , Coordination Complexes/chemical synthesis , Iron/chemistry , Models, Chemical , Thermodynamics
15.
Lasers Surg Med ; 54(4): 611-622, 2022 04.
Article in English | MEDLINE | ID: mdl-34918347

ABSTRACT

OBJECTIVES: The development of compact diagnostic probes and instruments with an ability to direct access to organs and tissues and integration of these instruments into surgical workflows is an important task of modern physics and medicine. The need for such tools is essential for surgical oncology, where intraoperative visualization and demarcation of tumor margins define further prognosis and survival of patients. In this paper, the possible solution for this intraoperative imaging problem is proposed and its feasibility to detect tumorous tissue is studied experimentally. METHODS: For this aim, the sapphire scalpel was developed and fabricated using the edge-defined film-fed growth technique aided by mechanical grinding, polishing, and chemical sharpening of the cutting edge. It possesses optical transparency, mechanical strength, chemical inertness, and thermal resistance alongside the presence of the as-grown hollow capillary channels in its volume for accommodating optical fibers. The rounding of the cutting edge exceeds the same for metal scalpels and can be as small as 110 nm. Thanks to these features, sapphire scalpel combines tissue dissection with light delivering and optical diagnosis. The feasibility for the tumor margin detection was studied, including both gelatin-based tissue phantoms and ex vivo freshly excised specimens of the basal cell carcinoma from humans and the glioma model 101.8 from rats. These tumors are commonly diagnosed either non-invasively or intraoperatively using different modalities of fluorescence spectroscopy and imaging, which makes them ideal candidates for our feasibility test. For this purpose, fiber-based spectroscopic measurements of the backscattered laser radiation and the fluorescence signals were carried out in the visible range. RESULTS: Experimental studies show the feasibility of the proposed sapphire scalpel to provide a 2-mm-resolution of the tumor margins' detection, along with an ability to distinguish the tumor invasion region, which results from analysis of the backscattered optical fields and the endogenous or exogenous fluorescence data. CONCLUSIONS: Our findings justified a strong potential of the sapphire scalpel for surgical oncology. However, further research and engineering efforts are required to optimize the sapphire scalpel geometry and the optical diagnosis protocols to meet the requirements of oncosurgery, including diagnosis and resection of neoplasms with different localizations and nosologies.


Subject(s)
Aluminum Oxide , Neoplasms , Animals , Humans , Lasers , Margins of Excision , Optical Fibers , Phantoms, Imaging , Rats
16.
Nano Lett ; 21(24): 10438-10445, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34874171

ABSTRACT

Metasurfaces are versatile tools for manipulating light; however, they have received little attention as devices for the efficient control of nonlinearly diffracted light. Here, we demonstrate nonlinear wavefront control through third-harmonic generation (THG) beaming into diffraction orders with efficiency tuned by excitation of hybrid Mie-quasi-bound states in the continuum (BIC) modes in a silicon metasurface. Simultaneous excitation of the high-Q collective Mie-type modes and quasi-BIC modes leads to their hybridization and results in a local electric field redistribution. We probe the hybrid mode by measuring far-field patterns of THG and observe the strong switching between (0,-1) and (-1,0) THG diffraction orders from 1:6 for off-resonant excitation to 129:1 for the hybrid mode excitation, showing tremendous contrast in controlling the nonlinear diffraction patterns. Our results pave the way to the realization of metasurfaces for novel light sources, telecommunications, and quantum photonics.

17.
Nat Commun ; 12(1): 4185, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34234138

ABSTRACT

High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.

19.
Molecules ; 26(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206080

ABSTRACT

The energy and structural parameters were obtained for all forms of the carbonyl complex of osmium Os3(CO)12 with D3h and D3 symmetries using density functional theory (DFT) methods. The calculations took into account various levels of relativistic effects, including those associated with nonconservation of spatial parity. It was shown that the ground state of Os3(CO)12 corresponds to the D3 symmetry and thus may be characterized either as left-twisted (D3S) or right-twisted (D3R). The D3S↔D3R transitions occur through the D3h transition state with an activation barrier of ~10-14 kJ/mol. Parity violation energy difference (PVED) between D3S and D3R states equals to ~5 × 10-10 kJ/mol. An unusual three-center exchange interaction was found inside the {Os3} fragment. It was found that the cooperative effects of the mutual influence of osmium atoms suppress the chirality of the electron system in the cluster.

20.
J Org Chem ; 86(11): 7460-7476, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34014677

ABSTRACT

A library of trans-4,5-dihydrofuran-3-carbonitriles was synthesized in a diastereoselective manner in good yields by the three-component reaction of ß-ketonitriles, carbonyl- and semistabilized pyridinium ylide precursors, and aldehydes in the presence of piperidine. This one-pot transformation generates two C-C and one C-O bond and proceeds through a cascade Knoevenagel condensation, a Michael addition, and intramolecular SN2 cyclization. Formation of cyclopropanecarbonitrile derivatives, which in some cases were obtained as major products, was found to be a competing reaction. The use of arylglyoxals changes regioselectivity and leads to 2-hydroxy-2H-pyran-5-carbonitriles.

SELECTION OF CITATIONS
SEARCH DETAIL
...