Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Eur J Histochem ; 68(1)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38568208

ABSTRACT

Nuptial glands are very diverse and associated with different pollination mechanisms. The greater the specificity in the pollen transfer mechanism from anther to stigma, the greater the morphological elaboration of flowers and functional complexity of the nuptial glands. In Apocynaceae, pollination mechanisms reached an extreme specificity, a fact that was only possible due to an extreme morphological synorganization and a profusion of floral glands. Although these glands are of different types, the vast majority have secretory cells only in the epidermis. In general, these epidermal cells produce many different compounds at the same time, and previous studies have demonstrated that in the style head, the functional complexity of epidermis has become even greater. Four types of style head are found in the family, which have different degrees of functional complexity in relation to the secretion produced and pollen dispersal mechanism. The secretion is fluid in types I, II and III, and the pollen is dispersed and adhered to the pollinator by the secretion produced by the style head. In type IV, the secretion hardens and acquires a specific shape, moulded by the spatial constraints of the adjacent floral organs. This evolutionary alteration is accompanied by changes in the structure and arrangement of the secretory cells, as well as in pollen aggregation and position of stigma. Histochemical analysis has shown that the secretion is mixed and highly complex, especially in the style head type IV, where the secretion, called translator, is formed by a rigid central portion, which adheres to the pollinator, and two caudicles that attach to two pollinia. The translator has a distinct composition in its different parts. Further studies are needed to answer the new questions that have arisen from the discovery of this highly functional complexity of the secretory tissue.


Subject(s)
Apocynaceae , Biological Evolution
2.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836152

ABSTRACT

Sapindales is a large order with a great diversity of nectaries; however, to date, there is no information about extrafloral nectaries (EFN) in Sapindaceae, except recent topological and morphological data, which indicate an unexpected structural novelty for the family. Therefore, the goal of this study was to describe the EFN in Sapindaceae for the first time and to investigate its structure and nectar composition. Shoots and young leaves of Urvillea ulmacea were fixed for structural analyses of the nectaries using light and scanning electron microscopy. For nectar composition investigation, GC-MS and HPLC were used, in addition to histochemical tests. Nectaries of Urvillea are circular and sunken, corresponding to ocelli. They are composed of a multiple-secretory epidermis located on a layer of transfer cells, vascularized by phloem and xylem. Nectar is composed of sucrose, fructose, xylitol and glucose, in addition to amino acids, lipids and phenolic compounds. Many ants were observed gathering nectar from young leaves. These EFNs have an unprecedented structure in the family and also differ from the floral nectaries of Sapindaceae, which are composed of secretory parenchyma and release nectar through stomata. The ants observed seem to protect the plant against herbivores, and in this way, the nectar increases the defence of vegetative organs synergistically with latex.

SELECTION OF CITATIONS
SEARCH DETAIL
...