Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B ; 58(Pt 6): 939-47, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12456972

ABSTRACT

The hydrostatic compression of piezoelectric single crystals of La(3)Nb(0.5)Ga(5.5)O(14) (LNG) and La(3)Ta(0.5)Ga(5.5)O(14) (LTG) was studied at pressures of up to 23 GPa in diamond-anvil high-pressure cells using single-crystal X-ray diffraction techniques. The reflection-intensity data for LNG and LTG were collected at pressures of up to 22.8 GPa and 16.7 GPa, respectively. Both compounds show anisotropic behaviour under pressure, which is caused by differences in bonding parallel to the a and c directions. The compression of strongly rigid structures leads to increasing internal strains and results, at pressures of 12.4 (3) GPa for LNG and 11.7 (3) GPa for LTG, in a transition to lower symmetry. The compressibilities along the c axis are almost the same for LNG and LTG through the whole investigated pressure range. In contrast, the pressure dependencies of the a axis of these materials are similar only for the initial phase, and the axial compressibilities for the high-pressure polymorphs of LNG and LTG are significantly different to each other. The volume compressibilities of trigonal LNG and LTG (space group P321) are about 0.007 GPa(-1); respective bulk moduli are 145 (3) GPa and 144 (2) GPa. The monoclinic high-pressure phases (space group A2) of LNG and LTG show differing compressions, which can be explained by the substitution of Ta(5+) for Nb(5+). Thus, the bulk moduli for the high-pressure polymorphs of LNG and LTG are B(0) = 93 (2) GPa and B(0) = 128 (12) GPa, respectively. The volume compressibilities of the high-pressure phases at 0.011 GPa(-1) for LNG and 0.008 GPa(-1) for LTG are higher than the initial phases, this effect being more pronounced in the case of LNG.

2.
Acta Crystallogr B ; 55(Pt 3): 259-265, 1999 Jun 01.
Article in English | MEDLINE | ID: mdl-10927366

ABSTRACT

The lattice dynamics of Na(4)TiP(2)O(9) (tetrasodium titanium diphosphorus nonaoxide, NTP) and Na(4.5)FeP(2)O(8)(O,F) (nonasodium diiron tetraphosphorus difluoride octadecaoxide, NFP) crystals, which are superionic conductors with Na(+)-ion conductivity, were studied under high pressures. Lattice constants as a function of hydrostatic pressure were measured on a four-circle diffractometer using a high-pressure cell with diamond anvils. At 1.78 +/- 0.15 GPa NTP undergoes a reversible phase transition from the modulated monoclinic (pseudo-orthorhombic) modification which is stable under atmospheric conditions. A similar phase transition in NTP is observed at 523 K. For NFP, it may be assumed that at least three phase transitions occur when the pressure increases from atmospheric to 12 GPa, at 1.39 +/- 0.08, 4.52 +/- 0.32, and 6.02 +/- 0.02 GPa, as concluded from the change in the unit-cell parameters and in the color of the crystals: the color changes from ginger (dark orange) to pink at ~1.5-2.0 GPa pressure and to violet at ~6.0 GPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...