Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 110(10): 1621-1635, 2022 10.
Article in English | MEDLINE | ID: mdl-35607724

ABSTRACT

Many disease pathologies, particularly in the eye, are induced by oxidative stress. In particular, injury to the optic nerve (ON), or optic neuropathy, is one of the most common causes of vision loss. Traumatic optic neuropathy (TON) occurs when the ON is damaged following blunt or penetrating trauma to either the head or eye. Currently, there is no effective treatment for TON, only management options, namely the systematic delivery of corticosteroids and surgical decompression of the optic nerve. Unfortunately, neither option alleviates the generation of reactive oxygen species (ROS) which are responsible for downstream damage to the ON. Additionally, the systemic delivery of corticosteroids can cause fatal off-target effects in cases with brain involvement. In this study, we developed a tunable injectable hydrogel delivery system for local methylene blue (MB) delivery using an internal method of crosslinking. MB was chosen due to its ROS scavenging ability and neuroprotective properties. Our MB-loaded polymeric scaffold demonstrated prolonged release of MB as well as in situ gel formation. Additionally, following rheological characterization, these alginate hydrogels demonstrated minimal cytotoxicity to human retinal pigment epithelial cells in vitro and exhibited injection feasibility through small-gauge needles. Our chosen MB concentrations displayed a high degree of ROS scavenging following release from the alginate hydrogels, suggesting this approach may be successful in reducing ROS levels following ON injury, or could be applied to other ocular injuries.


Subject(s)
Alginates , Optic Nerve Injuries , Alginates/therapeutic use , Humans , Hydrogels/therapeutic use , Optic Nerve , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/surgery , Reactive Oxygen Species
2.
Curr Eye Res ; 46(4): 429-444, 2021 04.
Article in English | MEDLINE | ID: mdl-33040616

ABSTRACT

Research on the vitreous humor and development of hydrogel vitreous substitutes have gained a rapid increase in interest within the past two decades. However, the properties of the vitreous humor and vitreous substitutes have yet to be consolidated. In this paper, the mechanical properties of the vitreous humor and hydrogel vitreous substitutes were systematically reviewed. The number of publications on the vitreous humor and vitreous substitutes over the years, as well as their respective testing conditions and testing techniques were analyzed. The mechanical properties of the human vitreous were found to be most similar to the vitreous of pigs and rabbits. The storage and loss moduli of the hydrogel vitreous substitutes developed were found to be orders of magnitude higher in comparison to the native human vitreous. However, the reported modulus for human vitreous, which was most commonly tested in vitro, has been hypothesized to be different in vivo. Future studies should focus on testing the mechanical properties of the vitreous in situ or in vivo. In addition to its mechanical properties, the vitreous humor has other biotransport mechanisms and biochemical functions that establish a redox balance and maintain an oxygen gradient inside the vitreous chamber to protect intraocular tissues from oxidative damage. Biomimetic hydrogel vitreous substitutes have the potential to provide ophthalmologists with additional avenues for treating and controlling vitreoretinal diseases while preventing complications after vitrectomy. Due to the proximity and interconnectedness of the vitreous humor to other ocular tissues, particularly the lens and the retina, more interest has been placed on understanding the properties of the vitreous humor in recent years. A better understanding of the properties of the vitreous humor will aid in improving the design of biomimetic vitreous substitutes and enhancing intravitreal biotransport.


Subject(s)
Biological Transport/physiology , Biomimetic Materials/chemistry , Viscoelastic Substances/chemistry , Vitreous Body/chemistry , Biocompatible Materials , Biomechanical Phenomena/physiology , Humans , Hydrogels/chemistry , Vitreous Body/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...