Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 1(1): 13-22, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-34467268

ABSTRACT

Palladium-catalyzed organometallic transformations of free amines are often unsuccessful due to side reactions, such as oxidation, that can occur. However, the ability to furnish the free amine products from these reactions is important for improving the utility and sustainability of these processes, especially for accessing their potential as medicinal and agrochemical agents. Notably, the 3,3-diarylallylamine motif is prevalent in a variety of biologically relevant structures, yet there are few catalytic approaches to their synthesis, and none involving the free amine. Herein, we describe a simple protocol for the arylation of cinnamylamines and the diarylation of terminal allylamines to generate a diverse group of 3,3-diarylallylamine products using a PdII precatalyst. Key features of the method are the ability to access relatively mild conditions that facilitate a broad substrate scope as well as direct diarylation of terminal allylamine substrates. In addition, several complex and therapeutically relevant molecules are included to demonstrate the utility of the transformation.

2.
J Vis Exp ; (138)2018 08 17.
Article in English | MEDLINE | ID: mdl-30176024

ABSTRACT

Herein is presented a general strategy to perform reactions under mild to moderate CO2 pressures with dry ice. This technique obviates the need for specialized equipment to achieve modest pressures, and can even be used to achieve higher pressures in more specialized equipment and sturdier reaction vessels. At the end of the reaction, the vials can be easily depressurized by opening at room temperature. In the present example CO2 serves as both a putative directing group as well as a way to passivate amine substrates, thereby preventing oxidation during the organometallic reaction. In addition to being easily added, the directing group is also removed under vacuum, obviating the need for extensive purification to remove the directing group. This strategy allows the facile γ-C(sp3)-H arylation of aliphatic amines and has the potential to be applied to a variety of other amine-based reactions.


Subject(s)
Carbon Dioxide/chemistry , Dry Ice/therapeutic use , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...